Skip to main content

Erosion and Dilation

  • Chapter

Abstract

Morphological operators aim at extracting relevant structures of the image considered as a set through its subgraph representation. This is achieved by probing the image with another set of known shape called structuring element (SE). The shape of the SE is usually chosen according to some a priori knowledge about the geometry of the relevant and irrelevant image structures. By irrelevant structures, we mean either noise or objects we would like to suppress.

Keywords

  • Line Segment
  • Hausdorff Distance
  • Mathematical Morphology
  • Morphological Operator
  • Bibliographical Note

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes and references

  • J. Astola, P. Haavisto, and Y. Neuvo. Vector median filters. Proceedings of the IEEE, 78 (4): 678–689, April 1990.

    CrossRef  Google Scholar 

  • S. Beucher. Segmentation d’Images et Morphologie Mathématique. PhD thesis, Ecole des Mines de Paris, June 1990.

    Google Scholar 

  • E. Breen and P. Soille. Generalization of van Herk recursive erosion/dilation algorithm to lines at arbitrary angles. In K. Fung and A. Ginige, editors, Proc. DICTA’93: Digital Image Computing: Techniques and Applications, pages 549555, Sydney, December 1993. Australian Pattern Recognition Society.

    Google Scholar 

  • B. Chaudhuri. An efficient algorithm for running window pel gray level ranking in 2-D images. Pattern Recognition Letters, 11 (2): 77–80, 1990.

    CrossRef  MATH  Google Scholar 

  • M. Comer and E. Delp. Morphological operations for color image processing. Journal of Electronic Imaging, 8 (3): 279–289, 1999.

    CrossRef  Google Scholar 

  • H. Freeman. On the encoding of arbitrary geometric configurations. IRE Transactions on Electronic Computers, 10: 260–268, 1961.

    CrossRef  MathSciNet  Google Scholar 

  • J. Gambotto. Algorithms for region description and modifications based on chain code transformations. In Proc. ICASSP, pages 1920–1923, Paris, May 1982.

    Google Scholar 

  • G. Garibotto and L. Lambarelli. Fast on-line implementation of two dimensional median filtering. Electronic Letters, 15 (1): 24–25, January 1979.

    CrossRef  Google Scholar 

  • F. Gerritsen and P. Verbeek. Implementation of cellular-logic operators using a 3 x 3 convolution and table lookup hardware. Computer Vision, Graphics, and Image Processing, 27: 115–123, 1984.

    CrossRef  Google Scholar 

  • J. Gil and M. Werman. Computing 2-D min, median, and max filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15 (5): 504–507, May 1993.

    CrossRef  Google Scholar 

  • J. Goutsias, H. Heijmans, and K. Sivakumar. Morphological operators for image sequences. Computer Vision and Image Understanding, 62: 326–346, 1995.

    CrossRef  Google Scholar 

  • A. Green, M. Berman, P. Switzer, and M. Craig. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26 (1): 65–74, 1988.

    CrossRef  Google Scholar 

  • H. Hadwiger. Minkowskische Addition und Subtraktion beliebiger Punktmengen und die Theoreme von Erhard Schmidt. Mathematische Zeitschrift,53(3):210218, 1950.

    Google Scholar 

  • R. Haralick. Digital step edges from zero crossing of second directional derivatives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6 (1): 58–68, January 1984.

    CrossRef  Google Scholar 

  • H. Heijmans, P. Nacken, A. Toet, and L. Vincent. Graph morphology. Journal of Visual Communication and Image Representation, 3 (2): 24–38, March 1992.

    CrossRef  Google Scholar 

  • H. Heijmans and C. Ronse. The algebraic basis of mathematical morphology: I. Dilations and erosions. Computer Vision, Graphics, and Image Processing, 50: 245–295, 1990.

    CrossRef  MATH  Google Scholar 

  • H. Heijmans and L. Vincent. Graph morphology in image analysis. In E. Dougherty, editor, Mathematical Morphology in Image Processing, volume 34 of Optical Engineering, chapter 6, pages 171–203. Marcel Dekker, New York, 1993.

    Google Scholar 

  • T. Huang, editor. Two-Dimensional Digital Signal Processing II: Transforms and Median Filters, volume 43 of Topics in Applied Physics. Springer-Verlag, Berlin, Heidelberg, New York, 1981.

    Google Scholar 

  • T. Huang, G. Yang, and G. Tang. A fast two-dimensional median filtering algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27 (1): 13–18, February 1979.

    Google Scholar 

  • D. Huttenlocher, D. Klanderman, and A. Rucklige. Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15 (9): 850–863, September 1993.

    CrossRef  Google Scholar 

  • P. Jackway. Properties of multiscale morphological smoothing by poweroids. Pattern Recognition Letters, 15: 135–140, 1994.

    CrossRef  MATH  Google Scholar 

  • L. Ji, J. Piper, and J.-Y. Tang. Erosion and dilation of binary images by arbitrary structuring elements using interval coding. Pattern Recognition Letters, 9: 20 1209, 1989.

    Google Scholar 

  • R. Jones and I. Svalbe. Basis algorithms in mathematical morphology. In Advances in Electronics and Electron Physics, volume 89, pages 325–390. Academic Press, 1994.

    Google Scholar 

  • M. Killinger, J.-L. de Bougrenet, P. Cambon, and C. Le Moing. Morphological filtering using a Fourier transform hologram. Optics Communications, 73 (6): 434–438, 1989.

    CrossRef  Google Scholar 

  • M. Kurdy and D. Jeulin. Directional mathematical morphology operations. Acta Stereologica, 8 /2: 473–480, 1989.

    Google Scholar 

  • P. Maragos and R. Schafer. Morphological filters Part II: their relations to median, order-statistic, and stack filters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35 (8): 1170–1184, August 1987.

    MathSciNet  Google Scholar 

  • P. Maragos and R. Schafer. Morphological systems for multidimensional signal processing. Proceedings of the IEEE, 78 (4): 690–709, April 1990.

    CrossRef  Google Scholar 

  • G. Matheron. Random Sets and Integral Geometry. Wiley, New York, 1975. J. Mazille. Mathematical morphology and convolutions. Journal of Microscopy, 156 (Ptl): 3–13, October 1989.

    Google Scholar 

  • F. Meyer. Mathematical morphology: from 2D to 3D. Journal of Microscopy, 165, Pt 1: 5–28, January 1992.

    CrossRef  Google Scholar 

  • H. Minkowski. Über die Begriffe Länge, Oberfläche und Volumen. Jahresbericht der Deutschen Mathematiker Vereinigung, 9: 115–121, 1901.

    MATH  Google Scholar 

  • Y. Nagakawa and A. Rosenfeld. A note on the use of local min and max operations in digital picture processing. IEEE Transactions on Systems, Man, and Cybernetics, 8: 632–635, August 1978.

    CrossRef  Google Scholar 

  • S. Osher and J. Sethian. Fronts propagating with curvature speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79: 12–49, 1988.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • J. Pecht. Speeding up successive Minkowski operations. Pattern Recognition Letters, 3 (2): 113–117, 1985.

    CrossRef  MATH  Google Scholar 

  • I. Pitas and A. Venetsanopoulos. Nonlinear Digital Filters. Kluwer Academic Publishers, Boston, 1990.

    MATH  Google Scholar 

  • K. Preston Jr. Multidimensional logical transforms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5 (5): 539–554, September 1983a.

    CrossRef  MATH  Google Scholar 

  • K. Preston Jr. Filters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 31 (4): 861–876, August 1983b.

    Google Scholar 

  • I. Ragnemalm. Fast erosion and dilation by contour processing and thresholding of distance maps. Pattern Recognition Letters, 13:161–166, 1992. J.-F. Rivest, P. Soille, and S. Beucher. Morphological gradients. Journal of Electronic Imaging, 2 (4): 326–336, October 1993.

    CrossRef  Google Scholar 

  • P. Salembier. Structuring element adaptation for morphological filters. Journal of Visual Communication and Image Representation, 3 (2): 115–136, June 1992.

    CrossRef  Google Scholar 

  • G. Sapiro, R. Kimmel, D. Shaked, B. Kimia, and A. Bruckstein. Implementing continuous-scale morphology via curve evolution. Pattern Recognition, 26 (9): 1363–1372, 1993.

    CrossRef  Google Scholar 

  • M. Schmitt. Des Algorithmes Morphologiques à l’Intelligence Artificielle. PhD thesis, Ecole des Mines de Paris, February 1989.

    Google Scholar 

  • F. Shih and O. Mitchell. A mathematical morphology approach to Euclidean distance transformation. IEEE Transactions on Image Processing, 2 (1): 197–204, April 1992.

    CrossRef  Google Scholar 

  • F. Shih and H. Wu. Optimization on Euclidean distance transformation using gray-scale morphology. Journal of Visual Communication and Image Representation, 3 (2): 104–114, June 1992.

    CrossRef  Google Scholar 

  • P. Soille. On morphological operators based on rank filters. Pattern Recognition, 35 (2): 527–535, Feb 2002.

    CrossRef  MATH  Google Scholar 

  • P. Soille, E. Breen, and R. Jones. Recursive implementation of erosions and dilations along discrete lines at arbitrary angles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 (5): 562–567, May 1996.

    CrossRef  Google Scholar 

  • P. Soille and H. Talbot. Directional morphological filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 (11): 1313–1329, November 2001.

    CrossRef  Google Scholar 

  • S. Sternberg. Cellular computers and biomedical image processing. In J. Sklansky and J. Bisconte, editors, Biomedical Images and Computers, volume 17 of Lecture Notes in Medical Informatics, pages 294–319, Berlin, 1982. Springer-Verlag.

    Google Scholar 

  • S. Sternberg. Grayscale morphology. Computer Graphics and Image Processing, 35: 333–355, 1986.

    CrossRef  Google Scholar 

  • R. van den Boomgaard and R. van Balen. Methods for fast morphological image transforms using bitmapped binary images. Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing, 54 (3): 252–258, May 1992.

    CrossRef  Google Scholar 

  • M. Van Droogenbroeck and H. Talbot. Fast computation of morphological operations with arbitrary structuring elements. Pattern Recognition Letters, 17 (14): 1451–1460, 1996.

    CrossRef  Google Scholar 

  • M. van Herk. A fast algorithm for local minimum and maximum filters on rectan- gular and octogonal kernels. Pattern Recognition Letters, 13: 517–521, 1992.

    CrossRef  Google Scholar 

  • L. van Vliet and B. Verwer. A contour processing method for fast binary neighbourhood operations. Pattern Recognition Letters, 7: 27–36, 1988.

    CrossRef  Google Scholar 

  • L. van Vliet, I. Young, and G. Beckers. A nonlinear Laplace operator as edge detector in noisy images. Computer Vision, Graphics, and Image Processing, 45 (2): 167–195, February 1989.

    CrossRef  Google Scholar 

  • L. Vincent. Graphs and mathematical morphology. Signal Processing, 16: 365–388, 1989.

    CrossRef  MathSciNet  Google Scholar 

  • L. Vincent. Morphological transformations of binary images with arbitrary structuring elements. Signal Processing, 22 (1): 3–23, January 1991.

    CrossRef  Google Scholar 

  • L. Vincent. Morphological algorithms. In E. Dougherty, editor, Mathematical Morphology in Image Processing, volume 34 of Optical Engineering, chapter 8, pages 255–288. Marcel Dekker, New York, 1993.

    Google Scholar 

  • S. Wilson. Theory of matrix morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14: 636–652, 1992.

    CrossRef  Google Scholar 

  • I. Young, R. Pevereni, P. Verbeek, and P. Otterloo. A new implementation for the binary and Minkowski operators. Computer Graphics and Image Processing, 17: 189–210, 1981.

    CrossRef  Google Scholar 

  • P. Zamperoni. Dilatation und Erosion von konturcodierten Binärbildern. Microscopica Acta, Suppl. 4: 245–249, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soille, P. (2004). Erosion and Dilation. In: Morphological Image Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05088-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05088-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07696-1

  • Online ISBN: 978-3-662-05088-0

  • eBook Packages: Springer Book Archive