Skip to main content

Texture analysis

  • Chapter

Abstract

An informal definition of the notion of texture is ‘the characteristic physical structure given to an object by the size, shape, arrangement, and proportions of its parts’ (Anonymous, 1994). The goal of texture analysis in image processing is to map the image of a textured object into a set of quantitative measurements revealing its very nature. The success of this mapping can be assessed by determining whether the resulting vectors are discriminant: measurement vectors of similar textures should form a cluster in the associated feature space and should be well separated from measurement vectors corresponding to different textures. In addition, the dimensionality of the vectors should be as small as possible for efficiency considerations. In this sense, texture analysis can be considered as a pattern recognition/classification problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R. Adams. Radial decomposition of discs and spheres. Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing, 55 (5): 325–332, September 1993.

    Article  Google Scholar 

  • Anonymous. Webster’s Encyclopedic Unabridged Dictionary. Gramercy Books, New York, 1994.

    Google Scholar 

  • A. Aubert, D. Jeulin, and R. Hashimoto. Surface texture classification from morphological transformations. In J. Goutsias, L. Vincent, and D. Bloomberg, editors, Mathematical Morphology and its Applications to Image and Signal Processing, pages 253–262, Boston, 2000. Kluwer Academic Publishers.

    Google Scholar 

  • P. Brodatz. Textures: a Photographic Album for Artists and Designers. Dover Publications, New York, 1966.

    Google Scholar 

  • J. Carr and W. Benzer. On the practice of estimating fractal dimension. Mathematical Geology, 23 (7): 945–958, 1991.

    Article  Google Scholar 

  • Y. Chen and E. Dougherty. Gray-scale morphological granulometric texture classification. Optical Engineering, 33 (8): 2713–2722, August 1994.

    Article  Google Scholar 

  • Y. Chen, E. Dougherty, S. Totterman, and J. Hornak. Classification of trabecular structure in magnetic resonance images based on morphological granulometries. Magnetic Resonance in Medicine, 29: 358–370, 1993.

    Article  Google Scholar 

  • M. Dominguez and L. Torres. Analysis and synthesis of textures through the inference of Boolean functions. Signal Processing, 59 (1): 1–16, 1997.

    Article  MATH  Google Scholar 

  • E. Dougherty and J. Pelz. Morphological granulometric analysis of electrophotographic images — size distribution statistics for process control. Optical Engineering, 30 (4): 438–445, 1991.

    Article  Google Scholar 

  • E. Dougherty, J. Pelz, F. Sand, and A. Lent. Morphological image segmentation by local granulometric size distributions. Journal of Electronic Imaging, 1 (1): 40–60, January 1992.

    Article  Google Scholar 

  • B. Dubuc, J.-F. Quiniou, C. Roques-Carmes, C. Tricot, and S. Zucker. Evaluating the fractal dimension of profiles. Physical Review A, 39 (3): 1500–1512, February 1989.

    Article  MathSciNet  Google Scholar 

  • D. Jeulin. Morphological modeling of images by sequential random functions. Signal Processing, 16: 403–431, 1989.

    Article  MathSciNet  Google Scholar 

  • D. Jeulin. Random models for the morphological analysis of powders. Journal of Microscopy, 172 (Part 1): 13–21, October 1993.

    Article  Google Scholar 

  • D. Jeulin and M. Kurdy. Directional mathematical morphology for oriented image restoration and segmentation. Acta Stereologica, 11: 545–550, 1992.

    Google Scholar 

  • D. Jeulin and P. Laurenge. Simulation of rough surfaces by morphological random functions. Journal of Electronic Imaging, 6 (1): 16–30, January 1997.

    Article  Google Scholar 

  • R. Jones and P. Soille. Periodic lines: definition, cascades, and application to granulometries. Pattern Recognition Letters, 17 (10): 1057–1063, September 1996.

    Article  Google Scholar 

  • A. Knoll, A. Horvat, K. Lyakhova, G. Krausch, G. Sevink, A. Zvelindovsky, and R. Magerle. Phase behavior in thin films of cylinder-forming block copolymers. Physical Review Letters,89(3): 035501, June 2002. URL http://dx.doi.org/ 10.1103/PhysRevLett.89.035501.

    Google Scholar 

  • M. Köppen, J. Ruiz-del-Solar, and P. Soille. Texture segmentation by biologically-inspired use of neural networks and mathematical morphology. In M. Heiss, editor, NC’98, International ICSC/IFAC Symposium on Neural Computation,pages 267–272, Wien, September 1998. ICSC Academic Press. URL http:// www.vision.fhg.de/ipk/publikationen/pdf/nc98.pdf.

    Google Scholar 

  • B. Laÿ. Recursive algorithms in mathematical morphology. Acta Stereologica, 6 (3): 691–696, September 1987.

    Google Scholar 

  • W. Li, V. Haese-Coat, and J. Ronsin. Residues of morphological filtering by reconstruction for texture classification. Pattern Recognition, 30 (7): 1081–1093, 1997.

    Article  Google Scholar 

  • R. Magerle. Nanotomography: real-space volume imaging with scanning probe microscopy. Lecture Notes in Physics, 600: 93–106, 2002.

    Article  Google Scholar 

  • B. Mandelbrot. How long is the coast of Great-Britain? Statistical self-similarity and fractional dimension. Science, 155: 636–638, 1967.

    Article  Google Scholar 

  • B. Mandelbrot. The Fractal Geometry of Nature. W.H. Freemann and Company, New York, 1983.

    Google Scholar 

  • P. Maragos. Pattern spectrum and multiscale shape representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (7): 701–716, July 1989.

    MATH  Google Scholar 

  • P. Maragos. Fractal signal analysis using mathematical morphology. In P. Hawkes and B. Kazan, editors, Advances in Electronics and Electron Physics, volume 88, pages 199–246. Academic Press, 1994.

    Google Scholar 

  • P. Maragos and F.-K. Sun. Measuring the fractal dimension of signals: morphological covers and iterative optimization. IEEE Transactions on Signal Processing, 41 (1): 108–121, January 1993.

    Article  MATH  Google Scholar 

  • G. Matheron. Eléments pour une Théorie des Milieux Poreux. Masson, Paris, 1967.

    Google Scholar 

  • G. Matheron. Random Sets and Integral Geometry. Wiley, New York, 1975.

    MATH  Google Scholar 

  • J. Mattioli and M. Schmitt. On information contained in the erosion curve. In Y.-L. O, A. Toet, D. Foster, H. Heijmans, and P. Meer, editors, Shape in Picture: Mathematical Description of Shape in Grey-level Images, pages 177–195. Springer-Verlag, 1994.

    Google Scholar 

  • A. Mauricio and C. Figueiredo. Texture analysis of grey-tone images by mathematical morphology: a nondestructive tool for the quantitative assessment of stone decay. Mathematical Geology, 32 (5): 619–642, 2000.

    Article  Google Scholar 

  • H. Minkowski. Über die Begriffe Länge, Oberfläche und Volumen. Jahresbericht der Deutschen Mathematiker Vereinigung, 9: 115–121, 1901.

    MATH  Google Scholar 

  • P. Nacken. Chamfer metrics, the medial axis and mathematical morphology. Journal of Mathematical Imaging and Vision, 6 (2/3): 235–248, 1996.

    Article  MathSciNet  Google Scholar 

  • S. Peleg, J. Naor, R. Hartley, and D. Avnir. Multiple resolution texture analysis and classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6 (4): 518–523, July 1984.

    Article  Google Scholar 

  • A. Rao. A Taxonomy for Texture Description and Identification. Springer-Verlag, New York, 1990.

    MATH  Google Scholar 

  • T. Reed and J. du Buf. A review of recent texture segmentation and feature extraction techniques. Computer Vision and Image Understanding,57(3):359372, May 1993.

    Google Scholar 

  • J.-P. Rigaut. Automated image segmentation by mathematical morphology and fractal geometry. Journal of Microscopy, 150(Pt 1 ): 21–30, April 1988.

    Article  Google Scholar 

  • J. Serra. The Boolean model and random sets. Computer Vision, Graphics, and Image Processing, 12: 99–126, 1980.

    Google Scholar 

  • J. Serra. Image Analysis and Mathematical Morphology. Academic Press, London, 1982.

    MATH  Google Scholar 

  • J. Serra. Boolean random functions. Journal of Microscopy, 156: 41–63, 1989.

    Article  Google Scholar 

  • K. Sivakumar and J. Goutsias. Discrete morphological size distributions and densities: estimation techniques and applications. Journal of Electronic Imaging, 6 (1): 31–53, January 1997.

    Article  Google Scholar 

  • K. Sivakumar and J. Goutsias. Morphologically constrained GRFs: applications to texture synthesis and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21 (2): 99–113, 1999.

    Article  Google Scholar 

  • P. Soille. Advances in the analysis of topographic features on discrete images. Lecture Notes in Computer Science, 2301: 175–186, March 2002a.

    Article  MathSciNet  Google Scholar 

  • P. Soille. Morphological texture analysis: an introduction. Lecture Notes in Physics, 600: 215–237, 2002b.

    Article  Google Scholar 

  • P. Soille and J.-F. Rivest. On the validity of fractal dimension measurements in image analysis. Journal of Visual Communication and Image Representation, 7 (3): 217–229, September 1996.

    Article  Google Scholar 

  • P. Soille and H. Talbot. Directional morphological filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 (11): 1313–1329, November 2001.

    Article  Google Scholar 

  • D. Stoyan and H. Stoyan. Fractals, Random Shapes, and Point Fields. John Wiley & Sons, Chichester, 1994.

    MATH  Google Scholar 

  • M. Vanrell and J. Vitrià. Mathematical morphology, granulometries, and texture perception. In E. Dougherty, P. Gader, and J. Serra, editors, Image Algebra and Morphological Image Processing IV, volume SPIE-2030, pages 152–161, July 1993.

    Google Scholar 

  • L. Vincent. Fast grayscale granulornetry algorithms. In J. Serra and P. Soille, editors, Mathematical Morphology and its Applications to Image Processing, pages 265–272. Kluwer Academic Publishers, 1994.

    Google Scholar 

  • L. Vincent. Granulometries and opening trees. Fundamenta Informaticae, 41 (1–2): 57–90, 2000.

    MathSciNet  MATH  Google Scholar 

  • P. Wagner. Texture analysis. In B. Jähne, H. Haußecker, and P. Geißler, editors, Handbook of Computer Vision and Applications, volume 2, chapter 12, pages 275–308. Academic Press, San Diego, 1999.

    Google Scholar 

  • D. Wang, V. Haese-Coat, A. Bruno, and J. Ronsin. Texture classification and segmentation based on iterative morphological decomposition. Journal of Visual Communication and Image Representation, 4 (3): 197–214, September 1993.

    Article  Google Scholar 

  • M. Werman and S. Peleg. Min-max operators in texture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7 (6): 730–733, November 1985.

    Article  Google Scholar 

  • X. Zheng, P. Gong, and M. Strome. Characterizing spatial structure of tree canopy using colour photographs and mathematical morphology. Canadian Journal of Remote Sensing, 21 (4): 420–428, 1995.

    Google Scholar 

  • Z. Zhou and A. Venetsanopoulos. Analysis and implementation of morphological skeleton transforms. Circuits Systems Signal Process, 11 (1): 253–280, 1992.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soille, P. (2004). Texture analysis. In: Morphological Image Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05088-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05088-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07696-1

  • Online ISBN: 978-3-662-05088-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics