Advertisement

Reactions of soil Collembolan communities to inundation in floodplain ecosystems of the Upper Rhine Valley

  • David J. Russell
  • Hans Schick
  • Dietrich Nährig
Chapter

Abstract

Flooding causes periodic disturbances in the biocoenoses of floodplain ecosystems. Such coenoses can thus be considered, in a succession-theoretical sense, to be pulse-stabilised subclimax successional stages. The reactions of Collembolan coenoses in floodplain forests, which had been formally cut off from the active inundation regime, to renewed flooding were studied in the Upper Rhine Valley over four years. Directly after the reintroduced inundation, many of the study sites were characterised by disturbed communities. In the following years, the Collembolan community structure, especially in the softwood alluvial sites, became clearly balanced and showed changes in species composition and dominance structure. Especially in the later years of the study, the Collembolan communities of the lowest, most often flooded, softwood sites were characterised by few species in high individual numbers. The communities of these sites and the upper-softwood sites became clearly dominated by hydrophilous or hydrotolerant species, respectively: an increasing adaptation to wetland conditions. In the hardwood alluvial sites, which were rarely or not flooded at all, the most species-rich communities were found. These showed species compositions different from those of the other, lower sites. Based on the different inundation intensities during the different study years as well as the different elevations above normal water levels of the various study sites, different reactions of individual species to inundation could be identified. These were further supported by correlation and factor analyses between the abundances of the individual species and hydrological data as well as by information known about life-cycle strategies and behaviour of these species. Together, these help provide a better understanding of the structure and reactions of the Collembolan communities in floodplain habitats, where a stabile mixture of hydrophilous, hydrotolerant and euryoecious woodland species appears necessary for functionally stabile, resilient soil-animal communities.

Keywords

Hardwood Forest Floodplain Forest Floodplain Ecosystem Collembolan Species Collembolan Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson JM (1988) Spatiotemporal effects of invertebrates on soil processes. Biol Fert Soils 6: 216–227CrossRefGoogle Scholar
  2. Anderson JM (1989) Forest soils as short, dry rivers: effects of invertebrates on transport processes. Verh Gesell Ökol 17: 33–46Google Scholar
  3. Asmor F, Eiland F, Nielsen NE (1994) Effect of extracellular-enzyme activities on solubilization rate of soil organic nitrogen. Biol Fert Soils 17: 32–38CrossRefGoogle Scholar
  4. Baumgärtl H, Kritzler K, Zimelka W, Zinkler D (1994) Local CO2 measurements in the environment of submerged soil microarthropods. Acta Oecologica 15: 781–789Google Scholar
  5. Beare MH, Coleman DC, Crossley DA Jr., Hendrix PF, Odum EP (1985) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant and Soil 170: 5–22CrossRefGoogle Scholar
  6. Beck L (1972) Der Einfluß der jahresperiodischen Überflutungen auf den Massenwechsel der Bodenarthropoden im zentral-amazonischen Regenwaldgebiet. Pedobiologia 12: 133–148Google Scholar
  7. Bretfeld G (1999) Symphypleona. In: Dunger E (ed) Synopses on palaearctic Collembola. Abh Ber Naturkundemus Görlitz 71: 1–318Google Scholar
  8. Carnoursky J, Krumbálová Z, Kalúz S, Wirthova M (1994) Soil arthropods of forest and adjacent agrocoenoses in certain localities of the Danube region in southwestern Slovakia. Biologia (Bratislava) 49: 173–183Google Scholar
  9. Coughtrey PJ, Jones CH, Martin MH, Shales SW (1979) Litter accumulation in woodlands contaminated by Pb, Zn, Cd, and Cu. Oecologia 39: 51–60CrossRefGoogle Scholar
  10. Deharveng L, Lek S (1995) High diversity and community permeability: the riparian Collembola (Insecta) of a Pyrenean massif. Hydrobiologia 312: 59–74CrossRefGoogle Scholar
  11. Dunger W (1972) Systematische und ökologische Studien an der Apterygotenfauna des Neißetals bei Ostritz/Oberlausitz. Abh Ber Naturkundemus Görlitz 47: 1–42Google Scholar
  12. Dunger W (1983) Tiere im Boden. 3rd edn. Ziemsen, Wittenberg LutherstadtGoogle Scholar
  13. Ehrlich PR, Ehrlich AH (1981) Extinction: the causes and consequences of the disappearance of species. Random House, New YorkGoogle Scholar
  14. Fager EW (1957) Determination and analysis of recurrent groups. Ecology 38: 586–595CrossRefGoogle Scholar
  15. Farkas J (1995) Collembola fauna from the shore of Lake Balaton, Hungary. Opusc Zool (Budapest) 27/ 28: 45–47Google Scholar
  16. Fischer SG (1983) Succession in streams. In: Barnes JR, Minshall GW (eds) Stream ecology: application and testing of general ecological theory. Plenum, New York, pp 7–27Google Scholar
  17. Fischer SG (1990) Recovery processes in lotic ecosystems: limits of successional theory. Environ Management 14: 725–736CrossRefGoogle Scholar
  18. Fischer SG, Grimm NB, Marti E, Holmes RM, Jones JB Jr. (1998) Material spiraling in stream corridors: a telescoping ecosystem model. Ecosystems 1: 19–34CrossRefGoogle Scholar
  19. Franz H (1975) Die Bodenfauna der Erde in Biozönotischer Betrachtung. 2 Bände. F. Steiner, WiesbadenGoogle Scholar
  20. Franz H, Gunhold P, Pschorn-Walcher H (1959) Die Kleintiergemeinschaften der Auwaldböden der Umgebung von Linz und benachbarter Flußgebiete. Naturkundl Jb Stadt Linz 5: 7–63Google Scholar
  21. Frenzel G (1936) Untersuchungen über die Tierwelt des Wiesenbodens. G Fischer, JenaGoogle Scholar
  22. Gauer U (1997) Collembola in Central Amazon inundation forests — strategies for surviving floods. Pedobiologia 41: 69–73Google Scholar
  23. Gisin H (1943) Ökologie und Lebensgemeinschaften der Collembolen im Schweizerischen Exkursionsgebiet Basels. Rev Suisse Zool 50: 131–224Google Scholar
  24. Gisin H (1978) Collembola. In: Lilies J (Ed) Limnofauna Europaea. Gustav Fischer, Stuttgart New York, pp 254–255Google Scholar
  25. Griegel A (1999) Räumliche Verteilung und jahreszeitliche Dynamik von Kleinarthropoden (Collembola, Gamasida) in den Auen des Unteren Odertals. Limnologie aktuell 9: 229–240Google Scholar
  26. Hâgvar S (1994) Log-normal distribution of dominance as an indicator of stressed soil microarthropod communities? Acta Zool Fennica 195: 71–80Google Scholar
  27. Handschin E (1925) Die Ökologie der Collembolenfauna westfälischer Hochmoore. Z wissensch Entomol 22: 295–310Google Scholar
  28. Handschin E (1927) Beiträge zur Kenntnis der Tierwelt norddeutscher Quellgebiete. Collembola (Springschwänze). D Entomol Z 70: 227–234Google Scholar
  29. Hopkin S (1997) Biology of the Springtails (Insecta: Collembola). Oxford Univ Press, Oxford — New York — TokyoGoogle Scholar
  30. Landesanstalt fur Umweltschutz Baden-Württemberg (LfU) (1999) Auswirkungen der Ökologischen Flutungen der Polder Altenheim. Ergebnisse des Untersuchungsprogramms 1993–1996Google Scholar
  31. Leuthold R (1961) Die Verteilung der Collembola in verschieden bearbeiteten Wiesenböden des oberbayerischen Raumes, mit tiergeographischen und autökologischen Angaben. Nachrichtenbl Bayer Entomol 10: 70–102Google Scholar
  32. Macfadyen A (1961) Improved funnel-type extractors for soil arthropods. J Anim Ecol 30: 171–184CrossRefGoogle Scholar
  33. Ministerium für Umwelt Baden-Württemberg (1988) Hochwasserschutz und Ökologie. Ein “Integriertes Rheinprogramm” schützt vor Hochwasser und erhält naturnahe Flußauen.Google Scholar
  34. Odum EP (1993) Ecology and our endangered life-support systems, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  35. Palissa A (1955) Ökologische Untersuchungen an bodenbewohnenden Apterygoten im Gebiete des Süßen Sees bei Eisleben (Ein Beitrag zur Bodenzoologie). Wissensch Z Ernst Moritz Arndt-Univ Greifswald 5: 465–488Google Scholar
  36. Palissa A (1959) Beiträge zur Ökologie und Systematik der Collembolen von Salzwiesen, 1. Teil. Dtsch Entomol Ztschr 6: 273–321CrossRefGoogle Scholar
  37. Petersen G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18CrossRefGoogle Scholar
  38. Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39(3): 284–422CrossRefGoogle Scholar
  39. Pichard S, Massoud Z, Elkain B (1989) Écologie des peuplements de Collemboles de quelques mares et des leurs abords en région parisienne. Rev Écol Biol Sol 26: 451–472Google Scholar
  40. Pielou EC (1984) The Interpretation of Ecological Data. Wiley and Sons, New York Chichester BrisbaneGoogle Scholar
  41. Plachter H (1991) Naturschutz. Fischer, StuttgartGoogle Scholar
  42. Ponge J-F (1980) Les biocénoses des Collemboles de la Forêt de Sénert. In: Pesson P (ed) Actualités d’Écologie forestière. Gauthier-Villars, Paris, pp 151–176Google Scholar
  43. Ponge J-F (1993) Biocoenoses of Collembola in atlantic temperate grass-woodland ecosystems. Pedobiologia 37: 223–244Google Scholar
  44. Rusek J (1984) Zur Bodenfauna in drei Typen von Überschwemmungswiesen in Süd-Mähren. Rozpravy Ceskoslovenske Akademie Ved. Rada matematickysh Prirodnich Ved 93: 1–126Google Scholar
  45. Russell DJ (1996) Die Collembolenfauna in Auenwäldern der Oberrheinebene — ein Beitrag zu Renaturierungsvorhaben (Collembola). Verh Intern Sympos Entomofaun Mitteleuropa, SIEEC 14: 397–406Google Scholar
  46. Schaefer M, Schauermann J (1990) The soil fauna of beech forests: comparison between a mull and a moder soil. Pedobiologia 34: 299–314Google Scholar
  47. Schäfer H (1986) Streuabbauverzögerung durch Akkumulation von Schadstoffen in Buchenwäldern. Verh Gesell Ökol 14: 309–318Google Scholar
  48. Schick H (1990) Collembolen als Bioindikatoren zur Beurteilung von Immissionseinwirkungen auf Waldökosysteme. PhD Thesis, University of HeidelbergGoogle Scholar
  49. Schieuter M (1984) Untersuchungen der Collembolenfauna verschiedener Waldstandorte des Naturparkes Kottenforstville. PhD Thesis, University of BonnGoogle Scholar
  50. Sinsabough RL (1994) Enzymatic analysis of microbial pattern and process. Biol Fert Soils 17: 69–74CrossRefGoogle Scholar
  51. Solmsdorf H, Lohmeyer W, Rass M (1975) Ermittlung und Untersuchung der schutzwürdigen und naturnahen Bereiche entlang des Rheins (Schutzwürdige Bereiche im Rheintal). Schr Reihe Landschaftspfl Naturschutz 11: 1–186Google Scholar
  52. Southwood TRE (1978) Ecological Methods. 2nd edn. Chapman and Hall, London New YorkCrossRefGoogle Scholar
  53. Strojan CL (1978) Forest leaf litter decomposition in the vicinity of a zinc smelter. Oecologia 32: 202–212CrossRefGoogle Scholar
  54. Tamm JC (1982) Das jahresperiodisch trockenliegende Eulittoral der Edertalsperre als Lebens- und Ersatzlebensraum — Eine Ökosystemstudie mit terrestrischem Schwerpunkt. Teil II: Die terrestrische Fauna. Arch Hydrobiol [Suppl] 64: 484–553Google Scholar
  55. Tamm JC (1984a) Die Flora und Fauna der jahresperiodisch trockenliegenden Überschwemmungsfluren der Edertalsperre — eine Auenbiozönose? Verh Ges Ökol 12: 355–360Google Scholar
  56. Tamm JC (1984b) Surviving long submergence in the egg stage — a successful strategy of terrestrial arthropods living on flood plains (Collembola, Acari, Diptera). Oecologia (Berlin) 61:417–419CrossRefGoogle Scholar
  57. Tamm JC (1986) Temperature-controlled under-water egg dormancy and postflood hatching in Isotoma viridis (Collembola) as forms of adaptation to annual long-term flooding. Oecologia 68: 241–245CrossRefGoogle Scholar
  58. Walker B (1992) Biological diversity and ecological redundancy. Conserv Biol 6: 18–23CrossRefGoogle Scholar
  59. Walker B (1995) Conserving biological diversity through ecosystem resilience. Conserv Biol 9: 747–752CrossRefGoogle Scholar
  60. Weigmann G (1973) Zur Ökologie der Collembolen und Oribatiden im Grenzbereich Land-Meer (Collembola, Insecta — Oribatei, Acari). Z wiss Zool 186: 295–391Google Scholar
  61. Weigmann G (1997) Bioindication by means of isovalent species groups. Abh Ber Naturkundemus Görlitz 69:59–65Google Scholar
  62. Weigmann G, Wohlgemuth-von Reiche D (1999) Vergleichende Betrachtung zu den Überlebensstrategien von Bodentieren im Überflutungsbereiche von Tieflandauen. Limnologie aktuell 9: 229–240Google Scholar
  63. Whitford WG (1996) The importance of the biodiversity of soil biota in arid ecosystems. Biodivers Cons 5: 185–195CrossRefGoogle Scholar
  64. Wink U (1969) Die Collembolen- und Oribatidenpopulationen einiger saurer Auböden Bayerns in Abhängigkeit von der Bodenfeuchtigkeit. Z ang Ent 64: 121–135CrossRefGoogle Scholar
  65. Wink U (1971) Bodenzoologische Untersuchungen. A. Unter besonderer Berücksichtigung der Collembolen und Oribatiden. Bay Landw Jb Sonderheft 5: 37–62Google Scholar
  66. Wolters V (1985) Untersuchungen zur Habitatbindung und Nahrungsbiologie der Springschwänze (Collembola) eines Laubwalds unter besonderer Berücksichtigung ihrer Funktion in der Zersetzerkette. PhD Thesis, University of GöttingenGoogle Scholar
  67. Wolters V (1991) Soil invertebrates. Effects on nutrient turnover and soil structure — a review. Z Pflanzenernähr Bodenkd 154: 389–402CrossRefGoogle Scholar
  68. Zinkler D, Rüssbeck R (1986) Ecophysiological adaptations of Collembola to low oxygen concentrations. In: Dallae R (ed) 2. International Seminar on Apterygota. University of Sienna, Siena, pp 123–127Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • David J. Russell
  • Hans Schick
  • Dietrich Nährig

There are no affiliations available

Personalised recommendations