Molecular Linkage Map of the Model Legume Medicago truncatula Gaertn.

  • P. Thoquet
  • A. Kereszt
  • J. M. Prosperi
  • T. Huguet
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 52)


The need for a more sustainable and environmentally safe agriculture has reinforced interest in the cultivation of legumes, which include important agricultural species such as alfalfa, clover, pea, soybean, bean, peanut, and more. These species have the capacity to establish an atmospheric dinitrogen fixing symbiose with soil bacteria collectively named rhizobia, and to form symbiotic root mycorrhizae with soil fungi, thus facilitating their uptake of phosphate, water, and other soil nutrients (Albrecht et al. 1999). However, genetic analysis of these processes remains difficult in the major crop legumes due to features such as tetraploidy, large genomes and/or the lack of efficient methods for transgenesis. Since the model plant Arabidopsis thaliana (as indeed is true of other Cruciferae) is unable to establish either rhizo-bial or mycorrhizal symbioses, the need to establish a model legume to analyze plant physiological processes which cannot be satisfactorily studied in A. thaliana has been recognized for over a decade (Cook and Denarie 2000).


Linkage Group Somatic Embryogenesis Amplify Fragment Length Polymorphism Sino Rhizobium Medicago Truncatula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht C, Geurts R, Bisseling T (1999) Legume nodulation and mycorrhizae formation: two extremes in host specificity meet. EMBO J 18:281–288PubMedCrossRefGoogle Scholar
  2. Alonso-Bianco C, Peeters AJM, Koorneef M, Lister C, Dean C, van den Bosch N, Pot J, Kuiper MTR (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14:259–271CrossRefGoogle Scholar
  3. Andrew WD, Hudson WJ (1954) A superior strain of medic- Barrel medic 173. Agric Gaz Feb: 76–80Google Scholar
  4. Barker DG, Bianchi S, Blondon F, Dattée Y, Duc G, Flament P, Gallusci P, Génier G, Guy P, Muel X, Tourneur J, Dénarié J, Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legumG symbiosis. Plant Mol Biol Rep 8:40–49CrossRefGoogle Scholar
  5. Bena G, Prosperi JM, Lejeune B, Olivieri I (1998) Evolution of annual species of the genus Medicago: a molecular phylogenetic approach. Mol Phylogenet Evol 9:552–559PubMedCrossRefGoogle Scholar
  6. Blondon F, Marie D, Brown S, Kondorosi A (1994) Genome size and base composition in Medicago sativa. and M. truncatula species. Genome 37:264–270PubMedCrossRefGoogle Scholar
  7. Bonnin I, Huguet T, Ghérardi M, Prosperi JM, Olivieri I (1996) High level of polymorphism and spatial structure in a selling plant species Medicago truncatula Gaertn. using RAPDs markers. Am J Bot 83:843–855CrossRefGoogle Scholar
  8. Bonnin I, Ronfort J, Wozniak F, Olivieri I (2001) Spatial effects and rare outcrossing events in Medicago truncatula (Fabaceae). Mol Ecol 10:1371–1384PubMedCrossRefGoogle Scholar
  9. Chabaud M, Larsonnaud C, Marmouget C, Huguet T (1996) Transformation of Barrel Medic (Medicago truncatula Gaertn.) by Agrobacterium tumefaciens and regeneration via somatic embryogenesis of transgenic plants with the MtENOD12 nodulin promoter fused to the GUS gene. Plant Cell Rep 15:305–310Google Scholar
  10. Cook D(1999) Medicago truncatula: a model in the making! Curr Opin Plant Biol 2:301–304PubMedCrossRefGoogle Scholar
  11. Cook D, Dénarié J (2000) Progress in the genomics of Medicago truncatula and the promise of its application to grain legume crops. Grain Legumes 28:12–13Google Scholar
  12. Cowitz PA, Smith LS, Long SR (1998) Expressed sequence tags from a root-hair enriched Medicago truncatula cDNA library. Plant Physiol 117:1325–1332CrossRefGoogle Scholar
  13. Doyle JJ, Doyle JL, Ballenger JA, Palmer JD (1996) The distribution and phylogenetic significance of a 50 kb chloroplast DNA inversion in the flowering plant family Leguminosae. Mol Phylogenet Evol 5:429–438PubMedCrossRefGoogle Scholar
  14. Frugoli J, Harris JM (2001) Medicago on the move. Plant Cell 13:458–63PubMedGoogle Scholar
  15. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kaiman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Porteteile D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vanden-bol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672PubMedCrossRefGoogle Scholar
  16. Gamas P, Niebel FD, Lescure N, Cullimore JV (1996) Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Mol Plant Microbe Interact 9:233–242PubMedCrossRefGoogle Scholar
  17. Györgyey J, Vaubert D, Jiménez-Zurdo JI, Charon C, Troussard L, Kondorosi A, Kondorosi E (2000) Analysis of Medicago truncatula nodule expressed tags. Mol Plant Microbe Interact 13:62–71PubMedCrossRefGoogle Scholar
  18. Hoffmann B, Trinh TH, Leung J, Kondorosi A, Kondorosi E (1997) A new Medicago truncatula line with superior in vitro regeneration, transformation and symbiotic properties isolated through cell culture selection. Mol Plant Microbe Interact 10:307–315CrossRefGoogle Scholar
  19. Jenczewski E, Ghérardi M, Bonnin I, Prosperi JM, Olivieri I, Huguet T(1997) Insight on segregation distortions in two intraspecific crosses between annual species of Medicago (Leguminosae). Theor Appl Genet 94:682–691CrossRefGoogle Scholar
  20. Kalo P, Endre G, Zimanyi L, Csanadi G, Kiss GB (2000) Construction of an improved linkage map of diploid alfalfa (Medicago sativa). Theor Appl Genet 100:641–657CrossRefGoogle Scholar
  21. Kulikova O, Gualtieri G, Geurts R, Kim D-J, Cook D, Huguet T, de Jong H, Fransz P, Bisseling T (2001) Integration of the FISH-pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58PubMedCrossRefGoogle Scholar
  22. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  23. Lilienfeld FA, Kihara H (1956) Dextrality and sinistrality in plants. Proc Jpn Acad 32:620–632Google Scholar
  24. Nam YW, Penmetsa RV, Endre G, Uribe P, Kim DJ, Cook DR (1999) Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response genes. Theor Appl Genet 98:638–646CrossRefGoogle Scholar
  25. Nolan KE, Rose RJ, Gorst JR (1989) Regeneration of Medicago truncatula from tissue culture: increase somatic embryogenesis using expiants from regenerated plants. Plant Cell Rep 8:278–281CrossRefGoogle Scholar
  26. Oram RN (1990) Register of Australian herbage plant cultivars, 3rd edn. CSIRO, Clayton South, VIC, AustraliaGoogle Scholar
  27. Penmetsa RV, Cook DR (2000) Production and characterization of diverse developmental mutants of Medicago truncatula. Plant Physiol 123:1387–1397PubMedCrossRefGoogle Scholar
  28. Prosperi JM, Auricht G, Génier G, Johnson R (2001) Medics (Medicago L.). In: Maxted N, Bennett SJ (eds) Plant genetic resources of legume in the Mediterranean. Kluwer, Dordrecht, pp 99–114Google Scholar
  29. Rose RJ, Nolan KE, Bicego L (1999) The development of the highly regenerable seed line Jemalong 2HA for transformation of Medicago truncatula—implications for regenerability via somatic embryogenesis. J Plant Physiol 155:788–791CrossRefGoogle Scholar
  30. Sagan M, Morandi D, Tarenghi E, Duc G(1995) Selection of nodulation and mycorrhizal mutants in the model plant Medicago truncatula Gaertn after gamma rays mutagenesis. Plant Sci 111:63–71CrossRefGoogle Scholar
  31. Thoquet P, Ghérardi M, Journet E-P, Kereszt A, Ané J-M, Prosperi J-M, Huguet T (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2 []
  32. Tirichine L, De Billy F, Huguet T (2000) Mtsym6, a gene conditioning Sinorhizobium strain-specific nitrogen fixation in Medicago truncatula. Plant Physiol 123:845–851PubMedCrossRefGoogle Scholar
  33. Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA,Google Scholar
  34. Tirichine L, De Billy F, Huguet T (2000) Mtsym6, a gene conditioning Sinorhizobium strain-specific nitrogen fixation in Medicago truncatula. Plant Physiol 123:845–851PubMedCrossRefGoogle Scholar
  35. Trinh TH, Ratet P, Kondorosi E, Durand P, Kamate K, Bauer P, Kondorosi A (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata lines improved in somatic embryogenesis. Plant Cell Rep 17:345–355CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • P. Thoquet
    • 1
  • A. Kereszt
    • 1
  • J. M. Prosperi
    • 2
  • T. Huguet
    • 1
  1. 1.Laboratoire de Biologie Moléculaire des Relations Plantes-MicroorganismesCNRS-INRACastanet-Tolosan CedexFrance
  2. 2.Station de Génétique et d’Amélioration des PlantesINRAMauguioFrance

Personalised recommendations