Semiconductor Statistics

  • Karlheinz Seeger
Part of the Advanced Texts in Physics book series (ADTP)


The periodic potential distribution of an electron in a crystal shown in Fig. 2.4 involves N discrete levels if the crystal contains N atoms, as we have seen in Fig. 2.8. A discussion of these levels can be confined to the first Brillouin zone. We saw in the last chapter that due to the crystal periodicity, the electron wave functions, which in one dimension are ψ(x) = u(x) exp(i k x), also have to be periodic (Bloch functions). Hence, from
$$u\left( {x + Na} \right) = u\left( x \right)$$
$$\exp \left( {ikx + ikNa} \right)u\left( {x + Na} \right) = \exp \left( {ikx} \right)u\left( x \right)$$
we obtain
$$\exp \left( {ikNa} \right) = 1$$
$$k = n2\pi /Na;n = 0,\pm 1,\pm 2, \ldots \pm N/2$$
, where a is the lattice constant. We notice that (3.1) is actually valid for a ring-shaped chain which means that we neglect surface states (Sect. 14.1). Since for the first Brillouin zone k has values between −π/a and +π/a, we find that the integer n is limited to the range between −N/2 and +N/2. In Fig. 3.1, the discrete levels are given for a crystal consisting of N = 8 atoms.


Fermi Energy Entropy Density Impurity Level Occupation Probability Internal Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1
    E. Spenke, Electronic Semiconductors (McGraw-Hill,New York 1965)Chap. 8Google Scholar
  2. 3.2
    E. Schrödinger, Statistical Thermodynamics (Cambridge Univ. Press, Cambridge 1948 )Google Scholar
  3. 3.3
    J.S. Blakemore, Semiconductor Statistics (Pergamon, Oxford 1962) Appendix B; J. McDougall, E.C. Stoner, Philos. Trans. A 237, 67 (1938); P. Rhodes, Proc. Roy. Soc. London A 204, 396 (1950)Google Scholar
  4. 3.4
    H.J. Goldsmid, Problems in Solid State Physics ( Academic, New York 1969 ) p. 354Google Scholar
  5. 3.5
    H. van Cong, S. Brunet, C. Charar, J.L. Birman, M. Averons, Solid State Commun. 45, 611 (1983)CrossRefGoogle Scholar
  6. 3.6
    W. Jantsch, Untersuchungen zur Ladungsträgerumbesetzung in höhere Leitungsbandminima von Gallium-Antimonid durch hohe elektrische Felder, Dissertation, Univ. Vienna, Austria (1971)Google Scholar
  7. 3.7
    J.A. van Vechten, Handbook on Semiconductors, Vol. 3 ed. by S.P. Keller (North-Holland, Amsterdam 1980) p.1 (review)Google Scholar
  8. 3.8
    H. Fritzsche, Phys. Rev. 120, 1120 (1960)CrossRefGoogle Scholar
  9. 3.9
    F. Bassani, G. Iadonisi, B. Preziosi, Rep. Prog. Phys. 37, No. 9, 1099 (1974)Google Scholar
  10. 3.10
    S.H. Koenig, R.D. Brown III, W. Schillinger, Phys. Rev. 128, 1668 (1962)CrossRefGoogle Scholar
  11. 3.11
    D. Long, C.D. Motchenbacher, J. Myers, J. Appl. Phys. 30, 353 (1959)CrossRefGoogle Scholar
  12. 3.12
    J. Blakemore, Semiconductor Statistics (Pergamon, Oxford 1962 ) Sect. 3. 2. 4Google Scholar
  13. 3.13
    J.S. Blakemore, Philos. Mag. 4, 560 (1959)CrossRefGoogle Scholar
  14. 3.14
    N.B. Hannay (ed.), Semiconductors ( Reinhold, New York 1959 ) p. 31Google Scholar
  15. 3.15
    E.M. Conwell, Proc. IRE 46, 1281 (1958)CrossRefGoogle Scholar
  16. 3.16
    T.H. Geballe, In [Ref.3.13, ps. 341, 342]Google Scholar
  17. 3.17
    R. Newman, W.W. Tyler, Solid State Physics Vol. 8, (F. Seitz, D. Turnbull, eds)(Academic, New York 1959 ) p. 62Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Karlheinz Seeger
    • 1
    • 2
  1. 1.ViennaAustria
  2. 2.Institut für MaterialphysikUniversitätViennaAustria

Personalised recommendations