Skip to main content
Book cover

Porous Media pp 275–294Cite as

Biphasic description of viscoelastic foams by use of an extended Ogden-type formulation

  • Chapter

Abstract

Soft polymeric foams exhibit distinct relaxation and creep phenomena which in combination with the cellular micro structure result in the outstanding mechanical characteristics of this type of porous materials. It is the goal of this contribution to present an appropriate biphasic continuum mechanical model based on the Theory of Porous Media (TPM) which allows the description of viscoelastic foams at a suitable means of computational costs. To reproduce the complex behaviour of the cellular polymer skeleton an extended Ogden-type viscoelasticity formulation is embedded into the porous media concept. Thus, the macroscopic model accounts for all relevant physical properties, i. e. the porous cell structure, the moving and interacting pore-fluid, and the intrinsic viscoelasticity of the polymeric matrix material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, J. M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977), 337–403.

    Article  MATH  Google Scholar 

  2. Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming, Theory and Algorithms. John Wiley & Sons, New York 1979.

    MATH  Google Scholar 

  3. Bear, J.: Dynamics of Fluids in Porous Media. Dover Publications, New York 1988.

    MATH  Google Scholar 

  4. de Boer, R.: Theory of Porous Media. Springer-Verlag, Berlin 2000.

    Book  MATH  Google Scholar 

  5. Bowen, R. M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Engng. Sci. 18 (1980), 1129–1148.

    Article  MATH  Google Scholar 

  6. Braess, D.: Finite Elemente. Springer-Verlag, Berlin 1997.

    MATH  Google Scholar 

  7. Brenan, K. E., Campbell, S. L., Petzold, L. R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, New York 1989.

    MATH  Google Scholar 

  8. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York 1991.

    Book  MATH  Google Scholar 

  9. Coleman, B. D., Gurtin, M. E.: Thermodynamics with internal state variables. J. Chem. Phys. 47 (1967), 597–613.

    Article  Google Scholar 

  10. Diebels, S., Ehlers, W.: Dynamic analysis of a fully saturated porous medium accounting for geometrical and material non-linearities. Int. J. Numer. Methods Engng. 39 (1996), 81–97.

    Article  MATH  Google Scholar 

  11. Diebels, S., Ellsiepen, P., Ehlers, W.: Error-controlled Runge-Kutta time integration of a viscoplastic hybrid two-phase model. Technische Mechanik 19 (1999), 19–27.

    Google Scholar 

  12. Ehlers, W.: Constitutive equations for granular materials in geomechanical context. In Hutter, K. (ed.): Continuum Mechanics in Environmental Sciences and Geophysics, CISM Courses and Lectures No. 337, Springer-Verlag, Wien 1993, pp. 313–402.

    Google Scholar 

  13. Ehlers, W.: Grundlegende Konzepte in der Theorie Poröser Medien. Technische Mechanik 16 (1996), 63–76.

    Google Scholar 

  14. Ehlers, W.: Foundations of multiphasic and porous materials. In Ehlers, W., Bluhm, J. (eds.): Porous Media: Theory, Experiments and Numerical Applications, Springer-Verlag, Berlin 2002, pp. 3–86.

    Google Scholar 

  15. Ehlers, W., Ellsiepen, P.: Zeitschrittgesteuerte Verfahren bei stark gekoppelten Festkörper-Fluid-Problemen. ZAMM 77 (1997), S81 - S82.

    MATH  Google Scholar 

  16. Ehlers, W., Ellsiepen, P.: Theoretical and numerical methods in environmental continuum mechanics based on the theory of porous media. In Schrefler, B. A. (ed.): Environmental Geomechanics, CISM Courses and Lectures No. 417, Springer-Verlag, Wien 2001, pp. 1–81.

    Google Scholar 

  17. Ehlers, W., Markert, B.: Intrinsic viscoelasticity of porous materials. In Sändig, A. M., Schiehlen, W., Wendland, W. L. (eds.): Multifield Problems–State of the Art, Springer-Verlag, Berlin 2000, pp. 143–150.

    Google Scholar 

  18. Ehlers, W., Markert, B.: On the viscoelastic behaviour of fluid-saturated porous materials. Granular Matter 2 (2000), 153–161.

    Article  Google Scholar 

  19. Eipper, G.: Theorie und Numerik finiter elastischer Deformationen in fluidgesättigten porösen Medien. Dissertation, Bericht Nr. II-1 aus dem Institut für Mechanik ( Bauwesen ), Universität Stuttgart 1998.

    Google Scholar 

  20. Ellsiepen, P.: Zeit-und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser Medien. Dissertation, Bericht Nr. II-3 aus dem Institut für Mechanik ( Bauwesen ), Universität Stuttgart 1999.

    Google Scholar 

  21. Forchheimer P.: Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing. 45 (1901), Nr.49, 1736–1741 und Nr. 50, 1781–1788.

    Google Scholar 

  22. Gibson, L. J., Ashby, F.: Cellular Solids, Structure and Properties. 2nd ed., University Press, Cambridge 1997.

    Google Scholar 

  23. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations, Vol. 2: Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin 1991.

    Google Scholar 

  24. le Tallec, P., Rahier, C., Kaiss, A.: Three-dimensional incompressible viscoelasticity in large strains: Formulation and numerical approximation., Comp. Methods Appl. Mech. Eng. 109 (1993), 133–258.

    Google Scholar 

  25. Lee, E. H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. (1969), pp. 1–6.

    Google Scholar 

  26. Lion, A.: A physically based method to represent the thermomechanical behaviour of elastomers. Acta Mechanica 123 (1997), 1–25.

    Article  MATH  Google Scholar 

  27. Luenberger, D. G.: Linear and Nonlinear Programming - Second Edition. Addison-Wesley Publishing Company, Reading, Massachusetts 1948.

    Google Scholar 

  28. Ogden, R. W.: Large deformation isotropic elasticity - On the correlation of theory and experiment for incompressible rubberlike solids. In: Proceedings of the Royal Society of London, Series A,Vol. 326 (1972), pp. 565–584.

    Google Scholar 

  29. Ogden, R. W.: Large deformation isotropic elasticity — On the correlation of theory and experiment for compressible rubberlike solids. In: Proceedings of the Royal Society of London, Series A,Vol. 328 (1972), pp. 323–338.

    Google Scholar 

  30. Ogden, R. W.: Inequalities associated with the inversion of elastic stress-deformation relations and their implications. Math. Proc. Camb. Phil. Soc. 81 (1977), 313–324.

    Article  MathSciNet  MATH  Google Scholar 

  31. Reese, S.: Theorie und Numerik des Stabilitiitsverhaltens hyperelastischer Festkörper. Dissertation, Fachbereich Mechanik, Technische Hochschule Darmstadt 1994.

    Google Scholar 

  32. Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Structures 35 (1998), 3455–3482.

    Article  MATH  Google Scholar 

  33. Schöberl, J.: NETGEN–An advancing front 2D/3D-mesh generator based on abstract rules. Comput. Visual. Sci. 1 (1997), 41–52.

    Article  MATH  Google Scholar 

  34. Sidoroff, F.: Un modèle viscoélastique non linéaire avec configuration intermédiaire Journal de Mécanique 13 (1974), 679–713.

    MathSciNet  Google Scholar 

  35. Spellucci, P.: An SQP method for general linear programs using only equality constrained subproblems. Math. Prog. 82 (1998), 413–448.

    MathSciNet  MATH  Google Scholar 

  36. Spellucci, P.: A new technique for inconsistent QP problems in the SQP method. Math. Meth. OR 47 (1998), 335–400.

    MathSciNet  Google Scholar 

  37. Tschoegl, N. W.: The Phenomenological Theory of Linear Viscoelastic Behaviour, An Introduction. Springer-Verlag, New York 1989.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ehlers, W., Markert, B., Klar, O. (2002). Biphasic description of viscoelastic foams by use of an extended Ogden-type formulation. In: Ehlers, W., Bluhm, J. (eds) Porous Media. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04999-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04999-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07843-9

  • Online ISBN: 978-3-662-04999-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics