Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 57))

  • 891 Accesses

Abstract

The high electron mobility of GaAs and related III–V compounds renders these materials very suitable for high-speed digital and microwave/millimeter wave applications. The superior operation frequency combined with low high-frequency noise and power dissipation has been exploited for the development of satellite and other telecommunications systems. In this respect, the extreme radiation hardness quoted for these materials is an invaluable plus point: total dose radiation tolerance levels up to 1 Grad(GaAs) have been observed, which is at least two orders of magnitude better than for hardened Si-based technologies. Nowadays, InP is more and more replacing GaAs substrates. However, the use of the semi-insulating (SI) substrates brings about some specific radiation effects, which jeopardize the correct functioning of devices and circuits. Therefore, in Sect. 7.2, some relevant material properties, related to ternary alloys used in a FET and the structure and operation of the Metal-Semiconductor Field-Effect Transistor (MESFET) and the High Electron Mobility Transistor (HEMT), also called Modulation Doped FET (MODFET) will be described. The radiation response and hardening of MESFETs will be presented in Sect. 7.3, followed next by the behavior of HEMTs (Sect. 7.4). Some general conclusions are drawn in Sect. 7.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson WT, Binari SC (1983) Radiation effects in GaAs devices and ICs In. IEEE Int Reliability Proc, The IEEE; New York, pp 316–319

    Google Scholar 

  2. Bourgoin JC, von Bardeleben JC, Stiévenard D (1988) Native defects in gallium arsenide. J Appl Phys 64:R65–R91

    Article  ADS  Google Scholar 

  3. Guillot G (1988) EL2-related studies in irradiated and implanted GaAs. Revue Phys Appl 23: 833–846

    Article  Google Scholar 

  4. Makram-Ebeid S, Boher P (1988) Defect pairs and clusters related to the EL2 centre in GaAs. Revue Phys Appl 23: 847–862

    Article  Google Scholar 

  5. Bourgoin JC, Lannoo M (1988) A critical look at EL2 models. Revue Phys Appl 23: 863–869

    Article  Google Scholar 

  6. Brunkov PN, Kalinovsky VS, Nikitin VG, Sobolev MM (1992) Generation of the EL2 defect in n-GaAs irradiated by high energy protons. Semicond Sci Technol 7: 1237–1240

    Article  ADS  Google Scholar 

  7. Hiemstra DM (1995) Dose rate and total dose dependence of the 1/f noise performance of a GaAs operational amplifier during irradiation. IEEE Trans Nucl Sci 42: 1615–1621

    Article  ADS  Google Scholar 

  8. Mooney PM (1990) Deep donor levels (DX centers) in III-V semiconductors. J Appl Phys 67: R1 - R26

    Article  ADS  Google Scholar 

  9. Papaioannou GJ, Papastamatiou MJ, Christou A (1995) He ion radiation effects in high electron mobility transistors. J Appl Phys 78: 3066–3076

    Article  ADS  Google Scholar 

  10. Nishiguchi M, Hashinaga T, Nishizawa H, Hayashi H, Okazaki N, Kitagawa M, Fujino T (1990) Radiation tolerant GaAs MESFET with a highly-doped thin active layer grown by OMVPE. IEEE Trans Nucl Sci 37: 2071–2075

    Article  ADS  Google Scholar 

  11. Janousek BK, Yamada WE, Krantz RJ, Bloss WL (1988) Neutron radiation effects in GaAs ion-implanted metal-semiconductor field-effect transistors. J Appl Phys 63: 1678–1686

    Article  ADS  Google Scholar 

  12. Bloss WL, Yamada WE, Young AM, Janousek BK (1988) Characteristics of GaAs MESFET inverters exposed to high energy neutrons. IEEE Trans Nucl Sci 35: 1074–1079

    Article  ADS  Google Scholar 

  13. Su C, Rohdin H, Stolte C (1983) 1/f noise in GaAs MESFETs. In: IEDM Tech Dig, The IEEE, New York, pp 601–604

    Google Scholar 

  14. Subramanian S, Sarkar A, Ungier L, Goodnick SM (1997) Integrity of III-V hetero-junction interfaces under gamma irradiation. IEEE Trans Nucl Sci 44: 1862–1869

    Article  ADS  Google Scholar 

  15. Ohyama H, Simoen E, Kuroda S, Claeys C, Takami Y, Hakata T, Sunaga H (1998) Impact of high energy particles on InGaP/InGaAs pseudomorphic HEMTs. IEEE Trans Nucl Sci 45: 2861–2866

    Article  ADS  Google Scholar 

  16. Anderson WT, Simons M, Tseng WF, Herb JA, Bandy S (1987) Transient radiation effects in A1GaAs/GaAs MODFETs IEEE Trans Nucl Sci 34: 1669–1675

    Article  Google Scholar 

  17. Krantz RJ, Bloss WL, O’Loughlin MJ (1988) High energy neutron irradiation effects in GaAs modulation-doped field effect transistors ( MODFETs ): Threshold voltage. IEEE Trans Nucl Sci 35: 1438–1443

    Google Scholar 

  18. Zuleeg R (1989) Radiation effects in GaAs FET devices. Proc IEEE 77: 389–407

    Article  ADS  Google Scholar 

  19. Anderson WT, Simons M, Christou A, Beall J (1985) GaAs MMIC technology radiation effects. IEEE Trans Nucl Sci 32: 4040–4045

    Article  ADS  Google Scholar 

  20. Meulenberg A, Hung H-LA, Peterson KL, Anderson WT (1988) Total dose and transient radiation effects on GaAs MMICs. IEEE Trans Nucl Sci 35: 2125–2132

    Google Scholar 

  21. Galashan AF, Bland SW (1990) Neutron and proton irradiation of shallow channel GaAs direct-coupled field-effect transistor logic devices and circuits. J Appl Phys 67: 173–179

    Article  ADS  Google Scholar 

  22. Derewonko H, Bosella A, Pataut G, Perié D, Pinsard JL, Sentubery C, Verbeck C, Bressy P, Augier, P (1996) Evaluation of GaAs low noise and power MMIC technologies to neutron, ionizing dose and dose rate effects IEEE Trans Nucl Sci 43: 837–844

    Google Scholar 

  23. Listvan MA, Vold PJ, Arch DK (1987) Ionizing radiation hardness of GaAs technologies. IEEE Trans Nucl Sci 34: 1664–1668

    Article  ADS  Google Scholar 

  24. Chang JY, Badawi MH, DeCicco A (1989) Neutron/gamma induced damage mechanisms and synergistic effects in GaAs MESFETs. IEEE Trans Nucl Sci 36: 2068–2075

    Article  ADS  Google Scholar 

  25. Campbell AB, Knudson AR, Stapor WJ, Summers G, Xapsos MA, Jessee M, Palmer T, Zuleeg R, Dale CJ (1986) Particle damage effects in GaAs test structures IEEE Trans Nucl Sci 33: 1435–1441

    Article  Google Scholar 

  26. Behle AF, Zuleeg R (1972) Fast neutron tolerance of GaAs JFETs operating in the hot electron regime IEEE Trans Electron Devices 19: 993–995

    Article  Google Scholar 

  27. Tan HH, Williams JS, Jagadish C (1995) Characterization of deep levels and carrier compensation created by proton irradiation in undoped GaAs. J Appl Phys 78: 14811487

    Google Scholar 

  28. Khanna SM, Rejeb C, Jorio A, Parenteau M, Carlone C, Gerdes Jr JW (1993) Electron and neutron radiation-induced order effect in gallium arsenide. IEEE Trans Nucl Sci 40: 1350–1359

    Article  ADS  Google Scholar 

  29. Jorio A, Parenteau M, Aubin M, Carlone C, Khanna SM, Gerdes Jr JW (1994) A mobility study of the radiation induced order effect in gallium arsenide. IEEE Trans Nucl Sci 41: 1937–1944

    Article  ADS  Google Scholar 

  30. Khanna SM, Jorio A, Carlone C, Parenteau M, Houdayer A, Gerdes Jr JW (1995) Particle dependence of the gallium vacancy production in irradiated n-type gallium arsenide IEEE Trans Nucl Sci 42: 2095–2103

    Article  Google Scholar 

  31. Citterio M, Rescia S, Radeka V (1995) Radiation effects at cryogenic temperatures in Si-JFET, GaAs MESFET, and MOSFET devices. IEEE Trans Nucl Sci 42: 2266–2270

    Google Scholar 

  32. Hiemstra DM, Kizeevi AA, Hou LZ, Salama CAT (1998) Dose rate and total dose dependence of low frequency noise performance, I-V curves and sidegating for GaAs MESFETs. IEEE Trans Nucl Sci 45: 2616–2623

    Google Scholar 

  33. Goronkin H, Birrittella MS, Seelbach WC, Vaitkus RL (1982) Backgating and light sensitivity in ion-implanted GaAs integrated circuits. IEEE Trans Electron Devices 29: 845–850

    Article  Google Scholar 

  34. Subramanian S, Bhattacharya PK, Staker KJ, Ghosh CL, Badawi MH (1985) Geometrical and light-induced effects on back-gating in ion-implanted GaAs MESFET’s IEEE Trans Electron Devices 32: 28–33

    Article  Google Scholar 

  35. Carruthers TF, Anderson WT, Weller JF (1985) Optically induced backgating transients in GaAs FET’s. IEEE Electron Device Lett 6: 580–582

    Article  ADS  Google Scholar 

  36. Shaw GJ, Xapsos MA, Weaver BD, Summers GP (1993) Low temperature proton irradiation of GaAs MESFETs. IEEE Trans Nucl Sci 40: 1300–1306

    Article  ADS  Google Scholar 

  37. Siyanbola WO, Palmer DW (1990) Low temperature annealing of deep electron traps produced by proton irradiation of n-GaAs. Semicond Sci Technol 5: 7–15

    Article  ADS  Google Scholar 

  38. Siyanbola WO, Palmer DW (1991) Electronic energy levels of defects that anneal in the 280-K stage in irradiated n-type gallium arsenide. Phys Rev Lett 66: 56–59

    Article  ADS  Google Scholar 

  39. Meneghesso G, Paccagnella A, Camin DV, Fedyakin N, Pessina G, Canali C (1997) Study of neutron damage in GaAs MESFETs. IEEE Trans Nucl Sci 44: 840–846

    Article  ADS  Google Scholar 

  40. Anderson WT, Gerdes J, Roussos JA (1993) Temperature dependent GaAs MMIC radiation effects. IEEE Trans Nucl Sci 40: 1735–1739

    Article  ADS  Google Scholar 

  41. O’Loughlin MJ (1988) Radiation effects in high electron mobility transistors: Total dose gamma irradiation. IEEE Trans Nucl Sci 34: 1808–1811

    Article  Google Scholar 

  42. Arpatzanis N, Papastamatiou M, Papaioannou GJ, Hatzopoulos Z, Konstandinides G (1995) The gamma ray radiation effects in high-electron-mobility transistors. Semicond Sci Technol 10: 1445–1451

    Article  ADS  Google Scholar 

  43. Papastamatiou M, Arpatzanis N, Papaioannou GJ, Papastergiou C, Christou A (1997) Neutron radiation effects in high electron mobility transistors IEEE Trans Electron Devices 44: 364–372

    Article  Google Scholar 

  44. Dupont-Nivet E, Pasquali M (1992) Neutron effects on HEMT devices. In: Proc RADECS ‘81, The IEEE, New York, pp 189–193

    Google Scholar 

  45. Ziegler JF, Biersack JP, Littmark P (1987) The Stopping and Range of Ions in Solids. Pergamon, New York, p 120

    Google Scholar 

  46. Janousek BK, Krantz RJ, Bloss WL, Yamada WE, Brown S, Remke RL, Witmer S (1989) Characteristics of GaAs heterojunction FETs (HFETs) and source follower FET logic ( SFFL) inverters exposed to high energy neutrons. IEEE Trans Nucl Sci 36: 2223–2228

    Google Scholar 

  47. Hakata T, Ohyama H, Kuroda S, Simoen E, Claeys C, Kudou T, Kobayashi K, Nakabayashi M, Yoneoka M, Takami Y, Sunaga H, Miyahara K (1999) Impact of induced lattice defects on performance degradation of AlGaAs/GaAs p-HEMTs. Physica B 273–274: 1034–1036

    Article  ADS  Google Scholar 

  48. Ohyama H, Simoen E, Kuroda S, Claeys C, Takami Y, Hakata T, Hayama K, Tajiri T, Nakabayashi M, Kobayashi K, Yoneoka M, Sunaga H (2000) Radiation damage in AlGaAs/GaAs pseudomorphic HEMTs. In: Proc of RADECS ‘89, The IEEE, New York, pp 295–298

    Google Scholar 

  49. Ohyama H, Simoen E, Kuroda S, Claeys C, Takami Y, Hakata T, Sunaga H (1999) Radiation induced lattice defects in InGaP/InGaAs p-HEMTs and their effect on device performance. Solid State Phenom 69–70: 563–568

    Article  Google Scholar 

  50. Cai SJ, Tang YS, Li R, Wei YY, Wong L, Chen YL, Wang KL, Chen M, Zhao YF, Schrimpf RD, Keay JC, Galloway KF (2000) Annealing behavior of a proton irradiated AlxGa1−xN/GaN high electron mobility transistor grown by MBE. IEEE Trans Electron Devices 47: 304–307

    Article  ADS  Google Scholar 

  51. Tanaka N, Kawanishi H, Ishikawa T (1993) Photoluminescence study of electron-beam damage in GaAs/AlGaAs quantum-well structures. Jpn J Appl Phys 32: 540–543

    Article  ADS  Google Scholar 

  52. Fink T, Smith DD, Braddock WD (1990) Electron-beam-induced damage study in GaAs-AlGaAs heterostructures as determined by magnetotransport characterization. IEEE Trans Electron Devices 37: 1422–1425

    Article  ADS  Google Scholar 

  53. Kanayama T, Takeuchi Y, Sugiyama Y, Tacano M (1992) In situ Hall measurement of two-dimensional electron gas at A10.3Ga0.7A1/GaAs interface irradiated with 10-keV Ar ions. Appl Phys Lett 61: 1402–1404

    Article  ADS  Google Scholar 

  54. Wada T, Kanayama T, Ichimura S, Sugiyama Y, Misawa S, Komuro M (1993) Effects of electron irradiation on two-dimensional electron gas in AlGaAs/GaAs heterostructure. Jpn J Appl Phys 32: 6262–6267

    Article  ADS  Google Scholar 

  55. Wada T, Kanayama T, Tada T, Wang X-L, Sugiyama Y, Komuro M (1995) Damages in AlGaAs/GaAs heterostructures induced by keV-electron-beam irradiation. Materials Science Forum 196–201: 1455–1460

    Article  Google Scholar 

  56. Anderson WT, Knudson AR, Meulenberg A, Hung H-L, Roussos JA, Kiriakidis G (1990) Heavy ion total fluence effects in GaAs devices. IEEE Trans Nucl Sci 37: 2065–2070

    Article  ADS  Google Scholar 

  57. Ohyama H, Yajima K, Simoen E, Katoh T, Claeys C, Takami Y, Kobayashi K, Yoneoka M, Nakabayashi M, Hakata T, Takizawa H (2000) Impact of 20-MeV a-ray irradiation on the V-band performance of AlGaAs pseudomorphic HEMTs IEEE Trans Nucl Sci 47: 2546–2550

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Claeys, C., Simoen, E. (2002). GaAs Based Field Effect Transistors for Radiation-Hard Applications. In: Radiation Effects in Advanced Semiconductor Materials and Devices. Springer Series in Materials Science, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04974-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04974-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07778-4

  • Online ISBN: 978-3-662-04974-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics