Advertisement

Tactile Mathematics

  • Stewart Dickson
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Visual Computing has led directly to Visual Mathematics — this by virtue of the ability to directly compile ‘natural’ mathematical language into machine-executable and graphical form. Direct 3-D computer printers allow fully concrete, 3-D representations for mathematical systems, directly from the numerical representation. The author references his work to date in the field of mathematical sculpture. The author has begun work on integrating text information in Braille into three-dimensional models of mathematical surfaces. Future work, including manipulating computer-specified tactile surface texture in Computer-Aided Design, presents challenges to the technical interfaces in common practise in the Mechanical Prototyping industry. This paper will outline some proposed solutions. This paper proposes the thesis that a richer, synergistic tactile experience can be afforded by combining the abstract information on a mathematical surface with the surface itself in-the-round in physical form.

Keywords

Minimal Surface Visual Computing Hyperbolic Paraboloid Laminate Object Manufacture Braille Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolfram S. (1996) (The Mathematica System for Doing Mathematics by Computer http://www.wolfram.com) The Mathematica Book, 3rd edn. Cambridge University Press, Cambridge
  2. 2.
    DeFanti T.A., Brown M.D. (1991) Visualization in Scientific Computing, Advances in Computers Vol. 33, Academic Press, New York, 247–305Google Scholar
  3. 3.
    Mandelbrot B. B. (1983) The Fractal Geometry of Nature, Freeman and CompanyGoogle Scholar
  4. 4.
    Hoffman D. (1987) New Embedded Minimal Surfaces The Mathematical Intelligencer 9 (3)Google Scholar
  5. 5.
    Dickson S. Mathematica Visualizations, http://emsh.calarts.edu/~mathart/portfolio/SPD_Math_portfolio.html
  6. 6.
    Razdan A., Mayer J.W., Steinberg B. (1997) Scientific Visualization using Rapid Prototyping Technologies, Proceedings of the Sixth European Conference on Rapid Prototyping, Nottingham, U.K., 171–175Google Scholar
  7. 7.
    D Systems Inc., Solid Imaging and Solid Object Printing, http://www.3dsystems.com
  8. 8.
    DTM Corporation, Advanced Rapid Prototyping and Manufacturing Solutions, http://www.dtm-corp.com/
  9. 9.
  10. 10.
    Helisys, Layered Material Technology, http://www.helisys.com
  11. 11.
    MIT 3-D Printing Laboratory http://me.mit.edu/groups/tdp/
  12. 12.
    Soligen, Parts Now, http://www.partsnow.com
  13. 13.
    Z Corporation, Office Compatible 3D Printers, http://www.zcorp.com
  14. 14.
    Hodgson E., (1998) Creating Art with Layer Manufacture (CALM), report to TASC, University of Central Lancashire, UK http://www.uclan.ac.uk/clt/calm/overview.htm
  15. 15.
    Peterson I. (1991) Plastic Math, Science News, 140 (5) 65–80Google Scholar
  16. 16.
    Skawinski W. J., Venanzi C. A., Ofsievich A. D., REAL VIRTUALITY: The Use of Laser Stereolithography for the Construction of Accurate Molecular Models, Department of Chemical Engineering, Chemistry, and Environmental Science, New Jersey Institute of Technology, http://www-ec.njit.edu/~skawinsk/nano/nano. html
  17. 17.
    Partch H., (1974) Genesis of a Music, 2nd edn., Da Capo Press, New YorkGoogle Scholar
  18. 18.
    Hoffman J., The Gauss Map, Mathematical Sciences Research Institute (MSRI), Berkeley http://www.msri.org/publications/sgp/jim/geom/surface/maps/gauss/mainc.html
  19. 19.
    Sullivan J. M., Francis G., Levy S., (1998) The Optiverse, University of Illinois http://new.math.uiuc.edu/optiverse Google Scholar
  20. 20.
    Hanson A. J., Munzner T., Francis G., (1994) Interactive Methods for Visualizable Geometry, IEEE Computer, 27 (4) 73–83 http://www.geom.umn.edu/ docs/research/ieee94/node8.htm1
  21. 21.
    Dickson S., Braille-Annotated Tactile Models In-The-Round of Three-Dimensional Mathematical Figures, http://emsh.calarts.edu/-mathart/Annotated_HyperPara.html
  22. 22.
  23. 23.
    Gardner J.A., (1998) The DotsPlus Tactile Font Set, Journal of Visual Impairment and Blindness, 836–840Google Scholar
  24. 24.
    Gardner J. A., (1999) Science Access Project, Oregon State University, Personal communication http://dots.physics.orst.edu http://www.physics.orst.edu/people/faculty/gardner.html
  25. 25.
    ViewPlus Technologies, TIGER Advantage Tactile Graphics and Braille Embosser http://www.viewplustech.com/products.html
  26. 26.
    American Thermoform Corporation, Swell-Touch paper http://www.atcbrlegp.com/swell.htm
  27. 27.
    Army High Performance Computing Research Center, Wavefront Fonts, http://www.arc.umn.edu/gvl-software/wavefront-fonts.html
  28. 28.
    Yu Y., Dana K., Rushmeier H., Marschner S., Premoze S., Sato Y., (2000) Image-based Surface Details,SIGGRAPH 2000 course notes, New Orleans http://www.cs.berkeley.edu/~yyz/publication/
  29. 29.
    Upstill S., (1989) The RenderMan Companion: A Programmer’s Guide to Realistic Computer Graphics, Addison-Wesley, NewYorkGoogle Scholar
  30. 30.
    Razdan A., (2000) Partnership for Research in Stereo Modeling (PRISM),Arizona State University, Personal communication http://surdas.eas.asu.edu/prism/prism/
  31. 31.
  32. 32.
    Glassner A., Maintaining Winged-Edge Models,in James Arvo (Ed.) Graphics Gems II, Academic Press, New York, IV.6, 191–201Google Scholar
  33. 33.
    Pedersen H. K., (1996) A Framework for Interactive Texturing on Curved Surfaces, SIGGRAPH 96 Conference Proceedings, Addison-Wesley, New York, 295–302CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Stewart Dickson
    • 1
  1. 1.MathArtCalabasasUSA

Personalised recommendations