Skip to main content

Diffraction Lineshapes

  • Chapter

This chapter explains the physical basis for three sources of broadening of diffraction peaks from crystalline materials:

  • small sizes of crystallites,

  • distributions of strains within inclividival crystailltes, or differences in strains between crystallites,

  • the diffractometer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • The contents of the following are described in the Bibliography.

    Google Scholar 

  • Leonid V. Azároff: Elements of X-Ray Crystallography (McGraw—Hill, New York 1968), reprinted by TechBooks, Fairfax, VA.

    Google Scholar 

  • Bernard D. Cullity: Elements of X-Ray Diffraction (Addison—Wesley, Reading, MA 1978).

    Google Scholar 

  • Harold P. Klug and Leroy E. Alexander: X-Ray Diffraction Procedures (Wiley—Interscience, New York 1974).

    Google Scholar 

  • I. C. Noyan and J. B. Cohen: Residual Stress (Springer—Verlag, New York 1987).

    Book  Google Scholar 

  • L. H. Schwartz and J. B. Cohen: Diffraction from Materials (Springer—Verlag, Berlin 1987).

    Book  Google Scholar 

  • B. E. Warren: X-Ray Diffraction (Dover, Mineola, NY 1990)

    Google Scholar 

Chapter 8 title figure of (400)fcc diffraction from a nanocrystalline iron alloy

  1. (Mo Ka radiation) .

    Google Scholar 

  2. 8.1 H. P. Klug and L. E. Alexander: X-Ray Diffraction Procedures (WileyInterscience, New York 1974) pp. 687–692.

    Google Scholar 

  3. 8.2 H. P. Klug and L. E. Alexander: X-Ray Diffraction Procedures (WileyInterscience, New York 1974) pp. 655–665.

    Google Scholar 

  4. 8.3 B. E. Warren: X-Ray Diffraction (Dover, New York, 1990) pp. 251–275.

    Google Scholar 

  5. 8.4 Warren and Averbach J. Appl. Phys. 21, (1950) 595.

    Article  CAS  Google Scholar 

  6. 8.4 Warren and Averbach J. Appl. Phys. 23, 497 (1952).

    Article  CAS  Google Scholar 

  7. 8.4a B. E. Warren: ‘X-Ray Studies of Deformed Metals’, Prog. Metal. Phys. 8, 147 (1959).

    Google Scholar 

  8. 8.4b B. E. Warren: X-Ray Diffraction (Dover, New York, 1990) pp. 251–275.

    Google Scholar 

  9. 8.5 C. E. Krill, R. Haberkorn and R. Birringer: ‘Specification of microstructure and characterization by scattering techniques’. In: Handbook of Nanostructured Materials and Nanotechnology, Vol. 2: Spectroscopy and Theory, ed. by H. S. Nalwa (Academic Press, San Diego, 2000) pp. 155–211.

    Chapter  Google Scholar 

  10. 8.6 Figure reprinted courtesy of C. E. Krill and R. Birringer, unpublished. The methods are described in C. E. Krill and R. Birringer, Philos. Mag. A 77, 621 (1998).

    Google Scholar 

  11. 8.7 H. Frase: Vibrational and Magnetic Properties of Mechanically Attrited Ni3Fe Nanocrystals. Ph.D. Thesis, California lnstitute of Technology, California (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fultz, B., Howe, J.M. (2002). Diffraction Lineshapes. In: Transmission Electron Microscopy and Diffractometry of Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04901-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04901-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04903-7

  • Online ISBN: 978-3-662-04901-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics