Ostwald ripening — Marqusee and Ross type analysis

  • Lorenz Ratke
  • Peter W. Voorhees
Part of the Engineering Materials book series (ENG.MAT.)


The Wagner-analysis rests on the introduction of a critical radius and the assumption that the volume fraction is a conserved quantity. This is inconsistent since the small supersaturation decays during coarsening and thus the volume also varies with time. It is possible to remove this inconsistency using instead the more general mass or enthalpy conservation laws1. The asymptotic analysis employs a power series representation for the particle size distribution in time and shows that asymptotically a time independent state is reached under the appropriate scaling, which is unique and independent of the initial conditions. This analysis was performed by Marqusee and Ross and is especially suitable to incorporate effects beyond simple mass diffusion. Moreover, the analysis is self-consistent unlike the Wagner-analysis. We therefore present their approach in some detail. We first treat coarsening due to interface kinetics in a supersaturated matrix and then treat coarsening due to diffusional heat transfer.


Critical Radius Interface Kinetic Normalize Size Distribution Power Series Representation Supersaturated Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Lorenz Ratke
    • 1
  • Peter W. Voorhees
    • 2
  1. 1.Institute for Space SimulationGerman Aerospace Center DLRCologneGermany
  2. 2.Dept. of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations