Skip to main content

From Stem Cell to Structure: Neurogenesis in the CNS of Decapod Crustaceans

  • Conference paper
The Crustacean Nervous System

Abstract

In recent years, studies on the structure of the developing crustacean CNS were hampered by the fact that only a relatively small number of methods apart from classical histology (e.g., Scholtz 1992; Harzsch and Dawirs 1993, 1995/96; Helluy et al. 1995, 1996; Roulant et al. 1994, 1995; Gerberding 1997) were available. Immunohistochemistry and in situ hybridization were used to reveal the ontogeny of neurotransmitter and neuroendocrine systems (see below). The general morphology of the embryonic CNS was investigated by neuron-specific antibodies (Dumont and Wine 1987; Meier and Reichert 1990; Garzino and Reichert 1994) and rhodamine phalloidin staining (Whitington et al. 1993; Scholtz 1995a,b) while axogenesis was analyzed by intracellular tracing techniques (Whitington et al. 1993; Gerberding and Scholtz 1999). Most of these developmental papers dealt with malacostracan crustaceans (Fig. 1), whereas little attention was paid to the ontogeny of the CNS in entomostracans. The recent finding that antibodies directed against acetylated a-tubulin and Drosophila synaptic proteins (synapsins: Klagges et al. 1996) strongly cross react within the crustacean CNS (Harzsch et al. 1997) has contributed a new item to the toolbox of the carcinologists who study development. Immunohistochemistry against synapsins has now proven to be a valuable method to examine the structure of both the immature (Harzsch et al. 1998, 1999a,b, 2000a) and adult crustacean CNS (various authors, this Vol.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Audehm U, Trube A, Dircksen H (1993) Patterns and projections of crustacean cardioactive peptide-immuno reactive neurones of the terminal ganglion of crayfish. Cell Tissue Res 272: 473–485

    Article  Google Scholar 

  • Beltz BS (1999) The distribution and functional anatomy of amine-containing neurons in decapod crustaceans. Microsc Res Techn 44: 105–120

    Article  CAS  Google Scholar 

  • Beltz B, Pontes M, Helluy SM, Kravitz EA (1990) Patterns of appearance of of serotonin and proctolin immunoreactivity in the developing nervous system of the American lobster. J Neurobiol 21: 521–542

    Article  PubMed  CAS  Google Scholar 

  • Beltz BS, Helluy S, Ruchhoeft ML, Gammil LS (1992) Aspects of the embryology and neural development of the American lobster. J Exp Zool 261: 288–297

    Article  PubMed  CAS  Google Scholar 

  • Benton J, Huber R, Ruchhoeft M, Helluy S, Beltz B (1997) Serotonin depletion by 5,7-dihydroxytryptamine alters deutocerebral development in the lobster, Homarus americanus. J Neurobiol 33: 357–373

    Article  PubMed  CAS  Google Scholar 

  • Chaudonneret J (1978) Ly phylogenèse du système nerveux annélido-arthropodien. Bull Soc Zool Fr 103: 69–95

    Google Scholar 

  • Cournil I, Casanovas B, Helluy SM, Beltz BS (1995) Dopamine in the lobster Homarus americanus: II. Dopamine-immunoreactive neurons and development of the nervous system. J comp Neurol 362: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Cronin TW (1986) Optical design and evolutionary adaptations in crustacean compound eyes. J Crustacean Biol 6: 1–23

    Article  Google Scholar 

  • Cronin TW, Marshall NJ, Caldwell R, Pales D (1995) Compound eyes and ocular pigments of crustacean larvae (Stomatopoda and Decapoda, Brachyura). Mar Fresh Behav Physiol 26: 219–231

    Article  Google Scholar 

  • Dohle W, Scholtz G (1997) How far does cell lineage influence cell fate specification in crustacean embryos? Semin Cell Dev Biol 8: 379–390

    Article  PubMed  CAS  Google Scholar 

  • Douglass JK, Forward RB Jr (1989) The ontogeny of facultative superposition optics in a shrimp eye: hatching through metamorphosis. Cell Tissue Res 258: 289–300

    Article  Google Scholar 

  • Duman-Scheel, Patel NH (1999) Analysis of molecular marker expression reveals neuronal homology in distantly related arthropods. Development 126: 2327–2334

    PubMed  CAS  Google Scholar 

  • Dumont JPC, Wine JJ (1987) The telson flexor neuromuscular system of the crayfish. I. Homology with the fast flexor system. J Exp Biol 127: 249–277

    Google Scholar 

  • Eguchi E, Arikawa K, Ishibashi S, Suzuki T, Meyer-Rochow VB (1989) Growth-related biometrical and biochemical studies of the compound eye of the crab, Hemigrapsus sanguineus. Zool Sci 6: 241–250

    Google Scholar 

  • Elofsson R (1969) The development of the compound eyes of Penaeus duorarum (Crustacea: Decapoda) with remarks on the nervous system. Z Zellforsch 97: 323–350

    Article  PubMed  CAS  Google Scholar 

  • Elofsson R, Dahl E (1970) The optic neuropils and chiasmata of crustacea. Z Zellforsch 107: 343–360

    Article  PubMed  CAS  Google Scholar 

  • Fincham AA (1984) Ontogeny and optics of the eyes of the common prawn (Palaemon (Palaemon) serratus (Pennant 1777). Zool J Linn Soc 81: 89–113

    Article  Google Scholar 

  • Fincham AA (1988) Ontogeny of anomuran eyes. Symp Zool Soc Lond 59: 123–155

    Google Scholar 

  • Garzino V, Reichert H (1994) Early embryonic expression of a 60-kD glycoprotein in the developing nervous system of the lobster. J Comp Neurol 346: 572–582

    Article  PubMed  CAS  Google Scholar 

  • Gaten E, Herring PJ (1995) Morphology of the reflecting superposition eyes of larval ophlophorid shrimps. J Morphol 225: 19–29

    Article  Google Scholar 

  • Gerberding M (1997) Germ band formation and early neurogenesis of Leptodora kindti (Cladocera): first evidence for neuroblasts in the entomostracan crustaceans. Invert Reproduct Dev 32: 93–73

    Google Scholar 

  • Gerberding M, Scholtz G (1999) Cell lineage of the midline cells in the amphipod crustacean Orchestia cavimana (Crustacea, Malacostraca) during formation and separation of the germ band. Dev Genes Evol 209: 91–102

    Article  PubMed  CAS  Google Scholar 

  • Hafner GS, Tokarski TR (1998) Morphogenesis and pattern formation on the retina of the crayfish Procambarus clarkii. Cell Tissue Res 293: 535–550

    Article  PubMed  CAS  Google Scholar 

  • Hafner GS, Tokarski T, Hammond-Soltis G (1982) Development of the crayfish retina: a light and electron microscopic study. J Morphol 173: 101–118

    Article  PubMed  CAS  Google Scholar 

  • Hafner GS, Tokarski TR, Kipp J (1991) Changes in the microvillus cytoskeleton during rhabdom formation in the retina of the crayfish Procambarus clarkii. J Neurocytol 20: 585–596

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S, Dawirs RR (1993) On the morphology of the central nervous system in larval stages of Carcinus maenas L. (Decapoda, Brachyura). Helgol Meeresunters 47: 61–79

    Article  Google Scholar 

  • Harzsch S, Dawirs RR (1993) On the morphology of the central nervous system in larval stages of Carcinus maenas L. (Decapoda, Brachyura). Helgol Meeresunters 47: 61–79

    Article  Google Scholar 

  • Harzsch S, Dawirs RR (1995) A developmental study of serotonin-immunoreactive neurons in the larval central nervous system of the spider crab Hyas araneus (Decapoda, Brachyura). Invertebr Neurosci 1: 53–65

    Article  CAS  Google Scholar 

  • Harzsch S, Dawirs RR(1995/96) Maturation of the compound eyes and eyestalk ganglia during larval development of the brachyuran crustaceans Hyas araneus L. (Decapoda, Majidae) and Carcinus maenas L. (Decapoda, Portunidae). Zoology 99: 189–204

    Google Scholar 

  • Harzsch S, Dawirs RR (1996a) Neurogenesis in the developing crab brain: postembryonic generation of neurons persists beyond metamorphosis. J Neurobiol 29: 384–398

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S, Dawirs RR (1996b) Development of neurons exhibiting FMRFamide-related immunoreactivity in the central nervous system of spider crab larvae (Hyas araneus L., Decapoda, Majidae). J Crustacean Biol 16: 10–19

    Article  Google Scholar 

  • Harzsch S, Schmidt M (1996) Brain development in adult crayfish includes the generation of new deutocerebral interneurons. Verh Dtsch Zool Ges 89.1:50

    Google Scholar 

  • Harzsch S, Walossek D(2000) Neurogenesis in the developing visual system of the branchiopod crustacean Triops longicaudatus (LeConte, 1846): corresponding patterns of compound-eye formation in Crustacea and Insecta? Dev Genes Evol DOI 10.1007/s004270000113

    Google Scholar 

  • Harzsch S, Anger K, Dawirs RR (1997) Immunocytochemical detection of acetylated α-tubulin and Drosophila synapsin in the embryonic crustacean nervous system. Int J Dev Biol 41: 477–484

    PubMed  CAS  Google Scholar 

  • Harzsch S, Miller J, Benton J, Dawirs R, Beltz B (1998) Development of the thoracic neuromeres in two crustaceans with different styles of metamorphic development. J Exp Biol 210: 2465–2479

    Google Scholar 

  • Harzsch S, Miller J, Benton J, Beltz B (1999a) From embryo to adult: persistent neurogenesis and apoptotic cell death shape the lobster deutocerebrum. J Neurosci 19: 3472–3485

    PubMed  CAS  Google Scholar 

  • Harzsch S, Benton J, Dawirs RR, Beltz B (1999b) A new look at embryonic development of the visual system in decapod crustaceans: neuropil formation, neurogenesis and apoptotic cell death. J Neurobiol 39: 294–306

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S, Benton J, Beltz B (2000a) An unusual case of a mutant lobster embryo with double brain and double ventral nerve cord. Arthropod Struct Dev 29: 95–99

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S, Dircksen H, Beltz B (2000b) Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: similarities with the insect circadian pacemaker system. Soc Neruosci Abstr: 916

    Google Scholar 

  • Helluy SM, Sandeman R, Beltz B (1993) Comparative brain ontogeny of the crayfish and clawed lobster — implications of direct and larval development. J Comp Neurol 335: 343–354

    Article  PubMed  CAS  Google Scholar 

  • Helluy SM, Ruchhoeft ML, Beltz BS (1995) Development of the olfactory and accessory lobes in the American lobster: An allometric analysis and its implications for the deutocerebral structure of decapods. J Comp Neurol 357: 433–445

    Article  PubMed  CAS  Google Scholar 

  • Helluy SM, Benton JL, Langworthy KA, Ruchhoeft ML, Beltz BS (1996) Glomerular organization in the developing olfactory and accessory lobes of the American lobster: stabilization of numbers and increase in size after metamorphosis. J Neurobiol 29: 459–472

    Article  PubMed  CAS  Google Scholar 

  • Klagges BRE, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerst R, Reisch D, Schaupp M, Buchner S., Buchner E (1996) Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci 16: 3154–3165

    PubMed  CAS  Google Scholar 

  • Land MF (1980) Compound eyes: old and new mechanisms. Nature 287: 681–686

    Article  PubMed  CAS  Google Scholar 

  • Meier T, Reichert H (1990) Neuronal development in the crustacean nervous system studied by neuron-specific antibody labelling. In: Kennedy K (ed) Frontiers in crustacean neuroscience. Birkhäuser, Basel, pp 523–529

    Google Scholar 

  • Meinertzhagen IA, Hanson TE (1993) The development of the optic lobe. In: Bate M, Martinez- Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1363–1491

    Google Scholar 

  • Mellon DF, Alones V (1993) Cellular organization and growth-related plasticity of the crayfish olfactory midbrain. Microsc Res Techn 24: 231–259

    Article  Google Scholar 

  • Meyer-Rochow VB (1975) Larval and adult eye of the western rock lobster (Panulirus longipes). Cell Tissue Res 162: 439–457

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Rochow VB, Towers D, Ziendins I (1990) Growth patterns in the eye of Petrolistes elongatus (Crustacea; Decapoda; Anomura). Exp Biol 48: 329–340

    PubMed  CAS  Google Scholar 

  • Nilsson D-E (1983) Evolutionary liks between apposition and superposition optics in crustacean eyes. Nature 302: 818–820

    Article  Google Scholar 

  • Nilsson D-E(1989) Optics and evolution of the compound eye. In:, Stavenga DG, Hardie RC(eds) Facets of vision Springer, Berlin Heidelberg New York, pp 30–73

    Chapter  Google Scholar 

  • Nilsson D-E, Hallberg E, Elofsson R (1986) The ontogenetic development of refracting superposition eyes in crustaceans: transformation of optical design. Tissue Cell 18:509–519

    Article  PubMed  CAS  Google Scholar 

  • Olesen J, Walossek D(2000) Limb ontogeny and trunk segmentation in Nebalia (Leach, 1814) (Crustacea: Malacostraca: Leptostraca). Zoomorphology 120: 47–64

    Article  Google Scholar 

  • Patel NH, Kornber TB, Goodman CS (1989) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107: 201–212

    PubMed  CAS  Google Scholar 

  • Rotllant G, De Kleijn D, Charmantier-Daures M, Charmantier G, Van Herp F (1993) Localization of crustacean hyperglycemic hormone (CHH) and gonad-inhibiting hormone (GIH) in the eyestalk of Homarus gammarus larvae by immunocytochemistry and in situ hybridization. Cell Tissue Res 271: 507–512

    Article  CAS  Google Scholar 

  • Rotllant G, Charmantier-Daures M, Trilles JP, Charmantier G (1994) Ontogeny of the sinus gland and the organ of Bellonci in larvae and postlarvae of the European lobster Homarus gammarus. Invert Reprod Dev 26: 13–22

    Article  Google Scholar 

  • Rotllant G, Charmantier-Daures M, De Kleijn D, Charmantier G, Van Herp F (1995) Ontogeny of neuroendocrine centers in the eyestalk of Homarus gammarus embryos: an anatomical and hormonal approach. Invert Reprod Dev 27: 233–245

    Article  CAS  Google Scholar 

  • Sandeman R, Sandeman D (1990) Development and identified neural systems in the crayfish brain. In: Kennedy K (ed) Frontiers in crustacean neuroscience. Birkhäuser, Basel, pp 498–508

    Google Scholar 

  • Sandeman RE, Sandeman DC (1996) Pre- and postembryonic development, growth and turnover of olfactory receptor neurones in crayfish antennules. J Exp Biol 199: 2409–2418

    PubMed  Google Scholar 

  • Sandeman RE, Clarke D, Sandeman D, Manly M (1998) Growth-related and antennular amputation-induced changes in the olfactory centers of crayfish brain. J Neurosci 18: 6195–6209

    PubMed  CAS  Google Scholar 

  • Schmidt M (1997) Continuous neurogenesis in the olfactory brain of adult shore crabs, Carcinus maenas. Brain Res 762: 131–143

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Harzsch S (1999) Comparative analysis of neurogenesis in the central olfactory pathway of adult decapod crustaceans by in vivo BrdU-labeling. Biol Bull 196: 127–136

    Article  Google Scholar 

  • Schneider H, Budhiraja P, Walter I, Beltz BS, Peckol E, Kravitz EA (1996) Developmental expression of the octopamine phenotype in lobsters, Homarus americanus. J comp Neurol 371:3–14

    Article  PubMed  CAS  Google Scholar 

  • Scholtz G (1992) Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda): germ band formation, segmentation and early neurogenesis. Wilhelm Roux’ Arch Dev Biol 202:36–48

    Article  Google Scholar 

  • Scholtz G (1995a) Expression of the engrailed gene reveals nine putative segment-anlagen in the embryonic pleon of the freshwater crayfish Cherax destructor (Crustacea, Malacostraca, Decapoda). Biol Bull 188: 157–165

    Article  Google Scholar 

  • Scholtz G (1995b) Head segmentation in Crustacea — an immunocytochemical study. Zoology 98: 104–114

    Google Scholar 

  • Scholtz G (1997) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH(eds) Arthropod relationships. Chapman & Hall, London, pp 317–332

    Google Scholar 

  • Scholtz G, Dohle W (1996) Cell lineage and cell fate in crustacean embryos — a comparative approach. Int J Dev Biol 37: 211–220

    Google Scholar 

  • Spindler K-D, Jaros P, Weideman W (2000) Crustacea. In: Dorn A (ed) Progress in developmental endocrinology. Wiley-Liss, New York, pp 243–269

    Google Scholar 

  • Sullivan JM, MacMillan DL (2001) Embryonic and postembryonic neurogenesis in the ventral nerve cord of the freshwater crayfish Cherax destructor. J Exp Zool (in press)

    Google Scholar 

  • Webster S, Dircksen H (1991) Putative molt-inhibiting hormone in larvae of the shore crab Carcinus maenas L.: an immunocytochemical approach. Biol Bull 180: 65–71

    Article  CAS  Google Scholar 

  • Whitington, PM (1995) Conservation versus change in early axogenesis in arthropod embryos: a comparison between myriapods, crustaceans, and insects. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 181–220

    Chapter  Google Scholar 

  • Whitington PM (1996) Evolution of neuronal development in arthropods. Semin Cell Dev Biol 7: 605–614

    Article  Google Scholar 

  • Whitington PM, Bacon JP (1997) The organization and development of the arthropod ventral nerve cord: insights into arthropod relationships. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 349–370

    Google Scholar 

  • Whitington PM, Leach D, Sandeman R (1993) Evolutionary change in neural development within the arthropoda: axogenesis in the embryos of two crustaceans. Development 118: 449–461

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harzsch, S. (2002). From Stem Cell to Structure: Neurogenesis in the CNS of Decapod Crustaceans. In: Wiese, K. (eds) The Crustacean Nervous System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04843-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04843-6_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08618-2

  • Online ISBN: 978-3-662-04843-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics