Skip to main content

Principal Component Analysis on Temporal-spatial Variations of Sea Level Anomalies from T/P Satellite Altimeter Data over the Northwest Pacific

  • Conference paper
Gravity, Geoid and Geodynamics 2000

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 123))

Abstract

Principal Component Analysis, which can reveal maximum temporal-spatial signal structure with a minimum amount of Principal Components (PCs), is used to investigate the temporal-spatial variations of sea level anomalies over the northwest Pacific. Either in S-mode or in T-mode, the sum of the variances contributed by the first 9 PCs in S-mode and by the first 3 PCs in T-mode exceeds 50% of the total amount of variation, respectively. Therefore, these PCs can reveal most of temporal-spatial pattern of sea level variations. There is a strong relationship between the El Nino and the temporal variations of the first PC either in S-mode or in T-mode, which explains the secular and inter-annual changes over the northwest Pacific. The rate of sea level change over the northwest Pacific, for the period October 1992-December 1999, is found to be negative: -0.55±0.30mm/year while in the Yellow Sea, the East China Sea and the South China Sea it is +3.4410.61 mm/year, +3.12±0.47 mm/year and -1.41±0.48 mm/year, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AVISO (1996). AVISO User handbook for Sea Level Anomaly altimeter products, AVI-NT-011–312-CN, edition 2.0.

    Google Scholar 

  • Barnett, T P, (1977). The principle time and space scale of Pacific trade wind fields, J. Atmos. Sci., 34(2): 221–236,

    Article  Google Scholar 

  • Barnett, T P (1984). The estimation of global sea level change: a problem of uniqueness. J. Geophys. Res., 89(C5): 7980–7988.

    Article  Google Scholar 

  • Bouzinac, C, J Vazquez and J Font (1998). Complex empirical orthogonal functions analysis of ERS-1 and TOPEX/ POSEIDON combined altimetric data in the region of the Algerian current, J. Geophys. Res., 103(C4): 8059–8071.

    Article  Google Scholar 

  • Bretherton, F P, R E Davis and C B Fandry (1976). A technique for objective analysis and design of oceanographic experiments applied to MODE-73, Deep Sea Res., 23: 559–582.

    Google Scholar 

  • Chelton, D B, M G Schlax, D L Witter and J G Richman (1990). Geosat altimeter observations of the surface circulation of the Southern Ocean, J. Geophys. Res., 95(C10): 17877–17903.

    Article  Google Scholar 

  • Davis, R (1976). Predictability of sea surface temperature and sea level pressure anomalies over the north Pacific ocean, J. Phys. Oceanogr., 6(3): 249–266.

    Article  Google Scholar 

  • Du, B L, X J Song (1981). A method applying empirical orthogonal function analysis to predict the sea surface temperature, Acta Oceanologica Sinica, 3(1): 14–27.

    Google Scholar 

  • Fang W D and W W Hsieh (1993). Summer sea surface temperature variability off Vancouver Island from satellite data. J. Geophys. Res., 98(C8): 14391–14400.

    Article  Google Scholar 

  • Fu L L and D B Chelton (1985). Observing large-scale temporal variability of ocean currents by satellite altimetry with application to the Antarctic Circumpolar Current, J. Geophys. Res., 90, 4721–4739.

    Article  Google Scholar 

  • Fu L L, J Vazquez and M E Parke (1987). Seasonal variability of the Gulf Stream from satellite altimeter, J. Geophys. Res., 92(C1): 749–754.

    Article  Google Scholar 

  • Hendricks J R, R R Leben, G H Born, C J Koblinsky (1996). EOF analysis of global TOPEX/POSEIDON data and implications for detection of global sea level rise. J. Geophys. Res., 101(C6), 14131–14145.

    Article  Google Scholar 

  • Kelly K A (1985). The influence of winds and topography on the sea surface temperature patterns over the Northern California Slope. J. Geophys Res., 90(C6):11783–11798.

    Article  Google Scholar 

  • Lagerloef G S E and R L Berstein (1988). Empirical orthogonal function analysis of Advanced Very High Resolution Radiometer sea surface temperature patterns in Santa Barbara Channel. J. Geophys. Res., 93(C6): 6863–6873.

    Article  Google Scholar 

  • Le Traon P Y, P Gaspar, F Bouyssel, H Makhmara (1995). Using TOPEX/POSEIDON data to enhance ERS-1 data, J. Atm. Ocean. Techn. 12, 161–170.

    Article  Google Scholar 

  • Le Traon, P Y and F Ogor (1998). ERS-1/2 orbit improvement using TOPEX/POSEIDON: the 2 cm challenge, J. Geophys. Res., 103, 8045–8057.

    Article  Google Scholar 

  • Marsh, J, G, et al. (1982) Global Mean Sea Surface Computation Using Geos-3 Altimeter Data. J. Geophys. Res., 87(B13), 10955–10964.

    Article  Google Scholar 

  • Overland J E and R W Preisendorfer (1982). A significance test for principal components applied to a cyclone climatology, Monthly Weather Review, 110(1): 1–4.

    Article  Google Scholar 

  • Paden C A, M R Abbott, C D Winant (1991). Tidal and atmosphere forcing of the upper ocean in the Gulf of California. Part I: sea surface temperature variability. J. Geophys. Res., 96(C10): 18337–18359.

    Article  Google Scholar 

  • Pan J Y, Y L Yuan, Q A Zhen (1997). Low-frequency of Kuroshio observed from Geosat altimeter data, Acta Oceanologica Sinica, 19(4): 41–62.

    Google Scholar 

  • Preisendorfer R W and T P Barnett (1977). The significance tests for empirical orthogonal functions, Fifth Conf. Probability and Statistics in Atmosphere Sciences, Amer. Meteor. Soc, 169–172.

    Google Scholar 

  • Reed R J and E E Recker (1971). Structure and properties of synoptic scale wave disturbances in the equatorial western Pacific, J. Atmos. Sci., 28, 1117–1133.

    Article  Google Scholar 

  • Wallace J M, R E Dickinson (1972). Empirical Orthogonal Representation of Time Series in the Frequency domain, J Appl. Meteor., 11(6), 887–900.

    Article  Google Scholar 

  • Wang H Y, L T Liu, H T Hsu, G Y Wang (1999a). The Sea Level Anomalies in China Sea and Vicinity from Satellite Altimeter Data, Proc. of the XXth Asian Conference on Remote Sensing, Hong Kong.

    Google Scholar 

  • Wang H Y (1999b). Satellite altimeter data processing and its applications in China Seas and vicinity, Ph.D., Institute of Geodesy & Geophysics, Chinese Academy of Sciences.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, H. (2001). Principal Component Analysis on Temporal-spatial Variations of Sea Level Anomalies from T/P Satellite Altimeter Data over the Northwest Pacific. In: Sideris, M.G. (eds) Gravity, Geoid and Geodynamics 2000. International Association of Geodesy Symposia, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04827-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04827-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07634-3

  • Online ISBN: 978-3-662-04827-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics