Skip to main content

Liquid Water at Low Temperature: Clues for Biology?

  • Chapter

Part of the book series: Biological and Medical Physics Series ((BIOMEDICAL))

Abstract

Although H2O has been the topic of considerable research since the beginning of the century, the peculiar physical properties are still not well understood. First we discuss some of the anomalies of this ‘complex fluid’. Then we describe a qualitative interpretation in terms of percolation concepts. Finally, we discuss recent experiments and simulations relating to the hypothesis that, in addition to the known critical point in water, there exists a ‘second’ critical point at low temperatures. In particular, we discuss very recent measurements of the compression-induced melting and decompression-induced melting lines of high-pressure forms of ice. We show how knowledge of these lines enables one to obtain an approximation for the Gibbs potential G(P, T) and the equation of state V(P, T) for water, both of which are consistent with the possible continuity of liquid water and the amorphous forms of solid water.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. G. Debenedetti: Metastable Liquids (Princeton University Press, Princeton 1996 )

    Google Scholar 

  2. J. T. Fourkas, D. Kivelson, U. Mohanty, K. A. Nelson, (eds.) Supercooled Liquids: Advances and Novel Applications (ACS Books, Washington DC 1997 ) 1. 3 J. C. Dore, J. Teixeira: Hydrogen-Bonded Liquids ( Kluwer Academic Publishers, Dordrecht 1991 )

    Google Scholar 

  3. S.-H. Chen, J. Teixeira, Adv. Chem. Phys. 64, 1 (1985)

    Google Scholar 

  4. M.-C. Bellissent-Funel, J. C. Dore, Hydrogen Bond Networks ( Kluwer Academic Publishers, Dordrecht 1994 )

    Google Scholar 

  5. O. Mishima, H.E. Stanley, Nature 396, 329 (1998)

    Google Scholar 

  6. P. Ball: Water: A Biography (Farrah Strauss, New York 1999 )

    Google Scholar 

  7. R. S. Smith, B. D. K.y, Nature, 398, 788 (1999); K.P. Stevenson, G.A. Kimmel, Z. Dohnalek, R.S. Smith, B.D. Kay, Science 283, 1505 (1999)

    Google Scholar 

  8. C. A. Angell, in Water: A Comprehensive Treatise Vol. 7, ed. by F. Franks ( Plenum Press, New York 1980 ) pp. 1–81

    Google Scholar 

  9. R. Waller, trans., Essayes of Natural Experiments [original in Italian by the Secretary of the Academie del Cimento]. Facsimile of 1684 English translation ( Johnson Reprint Corporation, New York 1964 )

    Google Scholar 

  10. H.E. Stanley, J. Phys. A 12, L329 (1979); H.E. Stanley, J. Teixeira, J. Chem. Phys. 73, 3404 (1980); H. E. Stanley, J. Teixeira, A. Geiger, R.L. Blumberg, Physica A 106, 260 (1981)

    Google Scholar 

  11. A. Geiger, H.E. Stanley, Phys. Rev. Lett. 49, 1749 (1982);

    Article  ADS  Google Scholar 

  12. H.E. Stanley, R. L. Blumberg, A. Geiger, Phys. Rev. B 28, 1626 (1983);

    Article  ADS  Google Scholar 

  13. H.E. Stanley, R. L. Blumberg, A. Geiger, P.Mausbach, J. Teixeira, J. de Physique 45, C7 [3] (1984)

    Google Scholar 

  14. L. Bosio, J. Teixeira, H.E. Stanley, Phys. Rev. Lett. 46, 597 (1981)

    Article  ADS  Google Scholar 

  15. Y. Xie, K. F. Ludwig, Jr., G. Morales, D. E. Hare, C. M. Sorensen, Phys. Rev. Lett. 71, 2050 (1993)

    Article  ADS  Google Scholar 

  16. C. A. Angell, M. Oguni, W. J. Sichina, J. Phys. Chem. 86, 998 (1982) 1. 16 A. Giacomini, J. Acoustical Soc. Am. 19, 701 (1947)

    Google Scholar 

  17. G.W. Willard, J. Acoustical Soc. Am. 19, 235 (1947)

    Google Scholar 

  18. R.L. Blumberg, H.E. Stanley, A. Geiger, P. Mausbach, J. Chem. Phys. 80, 5230 (1984)

    ADS  Google Scholar 

  19. E. Shiratani, M. Sasai, J. Chem. Phys. 104, 7671 (1996)

    Google Scholar 

  20. P.H. Poole, F. Sciortino, U. Essmann, H.E. Stanley, Nature 360, 324 (1992)

    Article  ADS  Google Scholar 

  21. K. Mendelssohn: The Quest for Absolute Zero: The Meaning of Low-Temperature Physics ( McGraw, New York 1966 )

    Google Scholar 

  22. P.H. Poole, F. Sciortino, T. Grande, H.E. Stanley, C.A. Angell, Phys. Rev. Lett. 73, 1632 (1994);

    Article  ADS  Google Scholar 

  23. C. F. Tejero, M.Baus, Phys. Rev. 57, 4821 (1998) 1. 23 S. Sastry, F. Sciortino, H.E. Stanley, J. Chem. Phys. 98, 9863 (1993)

    Article  Google Scholar 

  24. S. S. Borick, P. G. Debenedetti, S. Sastry, J. Phys. Chem. 99, 3781 (1995);

    Google Scholar 

  25. S. S. Borick, P. G. Debenedetti, J. Phys. Chem. 97, 6292 (1993)

    Article  Google Scholar 

  26. R.J. Speedy, J. Phys. Chem. 86, 3002 (1989)

    Article  Google Scholar 

  27. E.G. Ponyatovskii, V.V. Sinitsyn, T.A. Pozdnyakova, JETP Lett. 60, 360 (1994)

    ADS  Google Scholar 

  28. C.J. Roberts, P.G. Debenedetti, J. Chem. Phys. 105, 658 (1996)

    Google Scholar 

  29. C.J. Roberts, A.Z. Panagiotopoulos, P.G. Debenedetti, Phys. Rev. Lett. 77, 4386 (1996)

    Article  ADS  Google Scholar 

  30. F.H. Stillinger, A. Rahman, J Chem. Phys. 57, 1281 (1972)

    Google Scholar 

  31. F.W. Starr, J.K. Nielsen, H.E. Stanley, Phys. Rev. Lett. 82, 2294 (1999)

    Article  ADS  Google Scholar 

  32. W.L. Jorgensen, J. Chandrasekhar, J. Madura, R. W. Impey, M. Klein, J. Chem. Phys. 79, 926 (1983)

    ADS  Google Scholar 

  33. H.J. C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)

    Google Scholar 

  34. U. Niesar, G. Corongiu, E. Clementi, G.R. Kneller, D. Bhattacharya, J. Phys. Chem. 94, 7949 (1990)

    Google Scholar 

  35. F. Sciortino, P.H. Poole, U. Essmann, H.E. Stanley, Phys. Rev. E 55, 727 (1997)

    Google Scholar 

  36. S. Sastry, P.G. Debenedetti, F. Sciortino, H.E. Stanley, Phys. Rev. E, 53, 6144 (1996); L. P. N. Rebelo, P. G. Debenedetti, S. Sastry, J. Chem. Phys. 109, 626, (1998)

    Google Scholar 

  37. P. H. Poole, U. Essmann, F. Sciortino, H. E. Stanley, Phys. Rev. E 48, 4605 (1993)

    Google Scholar 

  38. P. H. Poole, F. Sciortino, U. Essmann, H.E. Stanley, Phys. Rev. E 48, 3799 (1993)

    Google Scholar 

  39. S. T. Harrington, R. Zhang, P. H. Poole, F. Sciortino, H.E. Stanley, Phys. Rev. Lett. 78, 2409 (1997)

    Article  ADS  Google Scholar 

  40. M. C. Bellissent-Funel, L. Bosio, J. Chem. Phys. 102, 3727 (1995)

    Google Scholar 

  41. F. W. Starr, M.-C. Bellissent-Funel, H.E. Stanley, Phys. Rev. E 60, 1084 (1999)

    Google Scholar 

  42. A. Geiger, P. Mausbach, J. Schnitker, in Water and Aqueous Solutions, ed. by G. W. Neilson, J. E. Enderby ( Adam Hilger, Bristol 1986 ) pp. 15

    Google Scholar 

  43. S.T. Harrington, P.H. Poole, F. Sciortino, H. E. Stanley, J. Chem. Phys. 107, 7443 (1997)

    ADS  Google Scholar 

  44. F. Sciortino, P. H. Poole, H. E. Stanley, S. Havlin, Phys. Rev. Lett. 64, 1686 (1990)

    Article  ADS  Google Scholar 

  45. A. Luzar, D. Chandler, Phys. Rev. Lett. 76, 928 (1996); B. A. Luzar, D. Chandler, Nature 379, 55 (1996)

    ADS  Google Scholar 

  46. H. Larralde, F. Sciortino, H.E. Stanley, “Restructuring the Hydrogen Bond Network of Water” (preprint); H. Larralde, Ph.D. Thesis (Boston University, 1993 )

    Google Scholar 

  47. F. Sciortino, A. Geiger, H.E. Stanley, Phys. Rev. Lett. 65, 3452 (1990) 1. 47 E. Shiratani, M. Sasai, J. Chem. Phys. 108, 3264 (1998)

    Google Scholar 

  48. F.W. Starr, C.A. Angell, R.J. Speedy, H.E. Stanley, “Entropy, Specific Heat, and Relaxation of Water at 1 atm between 136K and 236K” (preprint).

    Google Scholar 

  49. F. Sciortino, A. Geiger, H.E. Stanley, Nature 354, 218 (1991)

    Article  ADS  Google Scholar 

  50. F. Sciortino, A. Geiger, H.E. Stanley, J. Chem. Phys. 96, 3857 (1992)

    Google Scholar 

  51. P. Gallo, F. Sciortino, P. Tartaglia, S.-H. Chen, Phys. Rev. Lett. 76, 2730 (1996);

    Article  ADS  Google Scholar 

  52. F. Sciortino, P. Gallo, P. Tartaglia, S.-H. Chen, Phys. Rev. E, 54, 6331 (1996)

    Article  ADS  Google Scholar 

  53. H. Tanaka, Nature 380, 328 (1996)

    Article  ADS  Google Scholar 

  54. H. Tanaka, J. Chem. Phys. 105, 5099 (1996)

    Article  ADS  Google Scholar 

  55. T. Andrews, Philos. Trans. 159, 575 (1869)

    Google Scholar 

  56. Water: A Comprehensive Treatise,Vol. 1–7, ed. by F. Franks (Plenum Press, New York 1972); Water Science Reviews,Vol. 1–4, ed. by F. Franks (Cambridge University Press, Cambridge 1985)

    Google Scholar 

  57. R. J. Speedy, J. Phys. Chem. 91, 3354 (1987)

    Article  Google Scholar 

  58. C. A. Angell, Supercooled water, in: Water: A Comprehensive Treatise. ed. by F. Franks (Plenum Press, New York 1982 )

    Google Scholar 

  59. P.H. Poole, T. Grande, F. Sciortino, H.E. Stanley, C.A. Angell, J. Comp. Mat. Sci. 4, 373 (1995)

    Google Scholar 

  60. O. Mishima, J. Chem. Phys. 100, 5910 (1994)

    Google Scholar 

  61. O. Mishima, Nature 384, 546 (1996)

    Google Scholar 

  62. H. Kanno, R. Speedy, C. A. Angell, Science 189, 880 (1975)

    Article  ADS  Google Scholar 

  63. P. W. Bridgman, Proc. Amer. Acad. Arts Sci. 47, 441 (1912)

    Article  Google Scholar 

  64. L. F. Evans, J. Appl. Phys. 38, 4930 (1967)

    Article  ADS  Google Scholar 

  65. O. Mishima, H.E. Stanley, Nature 392, 164 (1998)

    Google Scholar 

  66. O. Mishima, H.E. Stanley, “Discontinuity in Decompression-Induced Melting of Ice IV” [Proc. Symposium on Water and Ice, Int’l Conf. on High Pressure Science and Technology AIRAPT-16 & HPCJ-38J J. Rev. High Press. Sci. Tech. 6, 1103 (1998)

    Google Scholar 

  67. H.E. Stanley, S.T. Harrington, O. Mishima, P.H. Poole, F. Sciortino, “Cooperative Molecular Motions in Water: The Second Critical Point Hypothesis” [Proc. 1997 Symposium on Water and Ice, Int’l Conf. on High Pressure Science and Technology AIRAPT-16 & HPCJ-381, J. Rev. High Press. Sci. Tech. 7, 1090 (1998)

    Article  Google Scholar 

  68. E. Lang, H.-D. Lüdemann, Ber. Bunsenges. Phys. Chem. 84, 462 (1980) 1. 68 E. Lang, H.-D. Lüdemann, Ber. Bunsenges. Phys. Chem. 85, 1016 (1981) 1. 69 E. Lang, H.-D. Lüdemann, J. Chem. Phys. 67, 718 (1977)

    Google Scholar 

  69. E. Lang, H.-D. Lüdemann, in NMR Basic Principles and Progress Vol. 24 ( Springer-Verlag, Berlin 1990 ) pp. 131–187

    Google Scholar 

  70. P. C. Hemmer, G. Stell, Phys. Rev. Lett. 24, 1284 (1970); G. Stell, P. C. Hemmer, J. Chem. Phys. 56, 4274 (1972); C. K.Hall, G. Stell, Phys. Rev. A 7, 1679 (1973).

    Google Scholar 

  71. M.R. Sadr-Lahijany, A. Scala, S.V. Buldyrev, H.E. Stanley, Phys. Rev. Lett. 81,4895 (1998); M. R. Sadr-Lahijany, A. Scala, S.V. Buldyrev, H.E. Stanley, “Water-Like Anomalies for Core-Softened Models of Fluids: One Dimension” (preprint); A. Scala, M.R. Sadr-Lahijany, S.V. Buldyrev, H.E. Stanley, “Water-Like Anomalies for Core-Softened Models of Fluids: Two Dimensions” (preprint).

    Google Scholar 

  72. M. Canpolat, F.W. Starr, M.R. Sadr-Lahijany, A. Scala, O. Mishima, S. Havlin, H.E. Stanley, Chem. Phys. Lett. 294, 9 (1998); M. Canpolat, F.W. Starr, M.R. Sadr-Lahijany, A. Scala, O. Mishima, S. Havlin, H.E. Stanley, “Structural Heterogeneities and Density Maximum of Liquid Water” (preprint).

    Google Scholar 

  73. G. E. Walrafen, J. Chem. Phys. 40, 3249 (1964); G. E. Walrafen, J. Chem. Phys. 47, 114, 1967; W. B. Monosmith and G. E. Walrafen, J. Chem. Phys. 81, 669 (1984)

    Google Scholar 

  74. M.C. Bellissent-Funel, Europhys. Lett. 42, 161 (1998)

    Google Scholar 

  75. F.W. Starr, S. Harrington, F. Sciortino, H.E. Stanley, Phys. Rev. Lett. 82, 3629 (1999); F. W. Starr, F. Sciortino, H.E. Stanley, preprint.

    Google Scholar 

  76. M. Meyer, H.E. Stanley, J. Phys. Chem. in press, 1999.

    Google Scholar 

  77. P. H. Poole, M. Hemmati, C. A. Angell, Phys. Rev. Lett. 79, 2281 (1997);

    Article  ADS  Google Scholar 

  78. H. E. Stanley, C. A. Angell, U. Essmann, M. Hemmati, P. H. Poole, F. Sciortino, Physica A 205, 122 (1994)

    Google Scholar 

  79. E.G. Ponyatovskii, JETP Lett. 66, 281 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stanley, H.E. (2002). Liquid Water at Low Temperature: Clues for Biology?. In: Taniguchi, Y., Stanley, H.E., Ludwig, H. (eds) Biological Systems Under Extreme Conditions. Biological and Medical Physics Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04802-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04802-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08528-4

  • Online ISBN: 978-3-662-04802-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics