Advertisement

Numerical Solution of the Non Homogeneous Fokker-Planck-Landau Equation

  • F. Filbet
  • L. Pareschi
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 1)

Abstract

In this note we describe a novel approach to the numerical solution of the Fokker-Planck-Landau equation in the non-homogeneous case. The method couples, through a time splitting algorithm, a finite volume scheme for the transport with a fast spectral solver for the efficient solution of the collision operator.

Keywords

Knudsen Number Collision Operator Vlasov Equation Finite Volume Scheme Time Splitting Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bobylev, A.V. (1975) Exact solutions of the Boltzmann equation, Dokl. Akad. Nauk. S.S.S.R., 225, pp. 1296–1299 (Russian).Google Scholar
  2. 2.
    Buet, C., Cordier, S., Degond, P., Lemou, M. (1997) Fast algorithms for numerical conservative and entropy approximations of the Fokker-Planck equation, J. Comp. Phys., 133, pp. 310–322.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Fijalkow, E. (1999) A numerical solution to the Vlasov equation. Comput. Phys. Communications, 116, pp. 319–328.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Filbet, F., Pareschi, L. (preprint) An accurate numerical method for the Fokker-Planck-Landau equation in the non homogeneous case.Google Scholar
  5. 5.
    Lemou, M. (1998) Multipole expansions for the Fokker-Planck-Landau operator, Num. Math., 68, pp. 597–618.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Medovikov, A.A. (1998). High order explicit methods for parabolic equations, BIT, 38, pp. 372–390.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Pareschi, L., Russo, G., Toscani, G. (2000) Fast spectral methods for the Fokker-Planck-Landau collision operator, J. Comp. Phys, 165, pp. 1–21.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • F. Filbet
    • 1
  • L. Pareschi
    • 2
  1. 1.Department of MathematicsUniversity of NancyVandœuvre-lès-NancyFrance
  2. 2.Department of MathematicsUniversity of FerraraFerraraItaly

Personalised recommendations