Multirate Methods in Electrical Circuit Simulation

  • A. Bartel
  • M. Günther
  • A. Kværnø
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 1)


Multirate methods in the simulation of coupled systems adapt the numerical effort to the activity level of the respective subsystems. Here, two different approaches will be presented: one based on operator splitting and a second using the concept of generalised multirated. For both the inverter-chain-benchmark serves as a test set, which will confirm the potential of multirate methods.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartel, A. Multirate ROW Methods of Mixed Type for Circuit Simulation. Submitted to SCEE-2000 Proceedings.Google Scholar
  2. 2.
    Günther, M. (1998) Simulating digital circuits numerically-a charge-oriented ROW approach. Numer. Math., 79, p. 203 - 212.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Günther, M., Hoschek, M. and Weiner, R. ROW methods adapted to cheap Jacobian. To appear in Appi. Num. Math. Google Scholar
  4. 4.
    Günther, M., Kværno, A. and Rentrop, P. Multirate Partitioned Runge-Kutta Methods. Submitted for publication in BIT.Google Scholar
  5. 5.
    Hairer, E. (1981) Order Conditions for Numerical Methods for Partitioned Ordinary Differential Equations. Numer. Math., 36, p. 431 - 445.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Kaps, P. and Rentrop, P. (1979) Generalised Runge-Kutta methods of order four with step size control for stiff ordinary differential equations. Numer. Math., 30, p. 55 - 68.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Roche, M. (1988) Rosenbrock methods for differential algebraic equations. Nu-mer. Math., 28, p. 145 - 162.MathSciNetGoogle Scholar
  8. 8.
    Strang, G. (1968) On the construction and comparison of difference schemes. SIAM J. Numer. Anal.,5?Google Scholar
  9. 9.
    Yoshida, H. (1990) Construction of higher order symplectic integrators. Physics Letters A,150?Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • A. Bartel
    • 1
  • M. Günther
    • 2
  • A. Kværnø
    • 3
  1. 1.IWRMMUniversität Karlsruhe (TH)KarlsruheGermany
  2. 2.Fakultät für Mathematik und WirtschaftswissenschaftenUniversität UlmUlmGermany
  3. 3.Dept. of Mathematical SciencesNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations