Advertisement

Equipment and Process Modelling of Industrial Crystal Growth Using the Finite Volume Codes CrysVUn and STHAMAS

  • M. Hainke
  • T. Jung
  • J. Friedrich
  • B. Fischer
  • M. Metzger
  • G. Müller
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 1)

Abstract

The numerical features of the computer codes CrysVUn and STHAMAS which were developed at the Crystal Growth Laboratory in Erlangen/Germany, are presented. The results for the global simulation of a VCZ-GaAs furnace are shown. Special emphasis is put on optimization problems. Calculations for an optimized annealing process are briefly described.

Keywords

Crystal Growth Gallium Arsenid Thermoelastic Stress Crystal Growth Process Global Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Müller, G. (1998) Melt growth of semiconductors. Mater. Sci. Forum, 276–277, pp. 87–108.CrossRefGoogle Scholar
  2. 2.
    Kurz, M.R.H. (1998) Development of CrysVUN++, a software system for numerical modelling and control of industrial crystal growth processes. PhD thesis, Technical Faculty of the University Erlangen-Nürnberg.Google Scholar
  3. 3.
    Fainberg, J. (2000) Entwicklung des Computercodes STHAMAS zur globalen Simulation der Kristallzüchtung nach dem Czochralski-Verfahren. PhD thesis, Technical Faculty of the University Erlangen-Nürnberg.Google Scholar
  4. 4.
    Salinger, A.G., Xiao, Q., Zhou, Y., Derby, J.J. (1994) Massively parallel finite element computations of three-dimensional, time-dependent, incompressible flows in materials processing systems. Comput. Methods Appl. Mech. Engrg., 119, pp. 139–156.zbMATHCrossRefGoogle Scholar
  5. 5.
    Derby, J.J. et al. High Performance Computing, Multi-Scale Models for Crystal Growth Systems. Lecture Notes in Computational Science and Engineering, Springer Verlag. Submitted.Google Scholar
  6. 6.
    Yeckel, A., Pandy, A., Hainke, M., Müller, G., Derby, J.J. A coupled, multi-scale model for continuum transport in crystal growth systems. J. Crystal Growth. In preparation.Google Scholar
  7. 7.
    Böttcher, K., Rudolph, P., Neubert, M., Kurz, M., Pusztai, A. and Müller, J. (1999) Global temperature field simulation of the vapor pressure controlled czochralski (VCZ) growth of 3“-4” gallium arsenid crystals. J. Crystal Growth, 198–199, pp. 349–354.CrossRefGoogle Scholar
  8. 8.
    Backofen, R., Kurz, M. and Müller, G. (2000) Process modeling of the industrial VGF growth process using the software package CrysVUN++. J. Crystal Growth, 211, pp. 202–206.CrossRefGoogle Scholar
  9. 9.
    Müller, G., Berwian, P., Buhrig, E. and Weinert, B. (2000) GaAs substrates for high-power diode lasers. In High-power diode lasers: fundamentals, technology, applications, with contributions by numerous experts,Springer-Verlag.Google Scholar
  10. 10.
    Metzger, M. (2000) Optimal control of industrial crystal growth processes. PhD thesis, Technical Faculty of the University Erlangen-Nürnberg.Google Scholar
  11. 11.
    Metzger, M. and Backofen, R. (2000) Optimal temperature profiles for annealing of GaAs-Crystals. J. Crystal Growth, 220, pp. 6–15.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • M. Hainke
    • 1
  • T. Jung
    • 1
  • J. Friedrich
    • 1
  • B. Fischer
    • 1
  • M. Metzger
    • 2
  • G. Müller
    • 1
    • 2
  1. 1.Crystal Growth LaboratoryFraunhofer Institute IIS-B ErlangenErlangenGermany
  2. 2.Crystal Growth Laboratory, Dept. for Material Science (WW6)University ErlangenErlangenGermany

Personalised recommendations