Advertisement

Front-Fixing Modeling of Directional Solidification in Microgravity Conditions

  • M. M. Cerimele
  • D. Mansutti
  • F. Pistella
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 1)

Abstract

A numerical simulation of a horizontal Bridgman solidification process of a pure material in microgravity conditions is presented. The mathematical model here adopted describes the flow of the liquid phase, the heat transport phenomena within the whole sample and the evolution of the phase front. The stream-function/vorticity formulation of the liquid flow and the front-fixing treatment of the moving boundary are used. The numerical approximation is based upon a second order ENO (Essentially Non-Oscillatory) scheme combined with a second order time scheme. The validation of the mathematical and numerical model is provided in full gravity conditions versus physical experimental observations.

Keywords

Directional Solidification Phase Interface Microgravity Condition Phase Front Bridgman Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hurle D.T.J. (1983) Convective transport in melt growth system, J. of Crystal Growth, 65, 124 - 132.CrossRefGoogle Scholar
  2. 2.
    Glicksman M. E., Coriell S. R. (1986) McFadden G. B., Interaction of flows with the crystal-melt interface, Ann. Rev. Fluid Mech, 18, 307 - 335.CrossRefGoogle Scholar
  3. 3.
    Huppert H. E. (1990) The fluid mechanics of solidification, J. Fluid Mech., 212, 209 - 240.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Viswanath R. and Jaluria Y. (1993) A comparison of different solution methodologies for melting and solidification problems in enclosures, Num. Heat Transfer, Part B, 24, 77 - 105.Google Scholar
  5. 5.
    Lacroix M. and Voller V.R. (1990) Finite difference solutions of solidification phase change problems: transformed versus fixed grids,Num. Heat Transfer B, 17, 25 - 41.zbMATHCrossRefGoogle Scholar
  6. 6.
    Cerimele M. M., Mansutti D. and Pistella F. (1997) Simulation of the melt flow in a horizontal Bridgman growth via a front-fixing method, Num. Meth. in Thermal Problems,(Lewis, R. W. and Cross, J. T., eds.), Pineridge Press, Swansea, 508-515.Google Scholar
  7. 7.
    Cerimele M. M., Mansutti D. and Pistella F. (1999) Numerical modeling of liquid/solid phase transitions: analysis of a gallium melting test, Quad. I.A.C. n.24/98,submitted to Computers and Fluids/Lecture Notes in in Physics (Springer).Google Scholar
  8. 8.
    Gau C. and Viskanta R. (1986) Melting and solidification of a pure metal on a vertical wall, J. Heat Transfer, 108, 174 - 181.CrossRefGoogle Scholar
  9. 9.
    Cerimele M. M., Mansutti D. and Pistella, F. (2000) A front-fixing method for flows in liquid/solid phase change with a benchmark test, CD-Rom Proceedings of E.C.C.O.M.A.S. 2000, Barcellona, 11-14 sept. 2000.Google Scholar
  10. 10.
    Yeoh G. H., de Vahl Davis G., Leonardi E., de Groh III H.C. and Yao M. (1997) A numerical and experimental study of natural convection and interface shape in crystal growth, J. of Crystal Growth, 173, 492 - 502.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • M. M. Cerimele
    • 1
  • D. Mansutti
    • 1
  • F. Pistella
    • 1
  1. 1.Istituto per le Applicazioni del Calcolo (IAC/CNR)RomaItaly

Personalised recommendations