Evolutionary Music and Fitness Functions

  • E. Bilotta
  • P. Pantano
  • V. Talarico
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 1)


Is it possible to obtain pleasant evolved music by means of a fitness function, without human intervention? In this work a method based on a genetic algorithm to produce automatic music is presented. In particular we developed a fitness function based on consonance, which allows to evaluate the “pleasantness” of a sequence of notes generated by an algorithm. The fitness function has then been used within genetic algorithms to help the resulting melodies evolve. This function has been used with cellular automata. An initial sequence will allowed to evolve within a space-time pattern and then turned into music as is suitable. The use of the Fitness function permits the search for and the choosing of appropriate rules, which generate pleasant melodic sequences. The best results are obtained for CA whose state varies between 0 and 3 and for small lattice.


Genetic Algorithm Fitness Function Cellular Automaton Artificial Life Evolution Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artificial Life in Art, Design and Entertainment. C.C. Maley and E. Boudreau (Eds.), Artificial Life VII Workshop Proceedings, Portland Oregon, 1–6 August 2000.Google Scholar
  2. 2.
    Banzhaf, W., Nordin, P., Keller, R. E., Frantone F. D. (1998) Genetic Programming: an Introduction, Morgan Kaufmann Publishers, Inc., San Francisco, California.Google Scholar
  3. 3.
    Bilotta, E., Pantano, P., Talarico V. (2000) Synthetic Armonies: an approach to musical semiosis by means of cellular automata. In M. A. Bedau, J. S. McCaskill, N. H. Packard, S. Rasmussen (Eds.), Artificial Life Proceedings, The MIT Press, Cambridge, Massachusetts.Google Scholar
  4. 4.
    Bilotta, E., Pantano, P.,(2000) In search for Musical Consonance. Electronic Musical Review,5,3.Google Scholar
  5. 5.
    Bilotta, E., Pantano, P., Talarico V. (2000) Music, Mathematics and Artificial Life. 11 ECMI Symposium, September 2000, Palermo, Italy.Google Scholar
  6. 6.
    Frova A. (1999) La Fisica della Musica. Zanichelli, Bologna, ItaliaGoogle Scholar
  7. 7.
    Gutowitz, H., Langton C. G. (1995) Mean Field Theory of the Edge of Chaos. In Proceedings of ECAL 3, Springer, Berlin.Google Scholar
  8. 8.
    Koza, J. R. (1992) Genetic Programming: on the programming of computers by means of natural selection. The MIT Press, Cambridge, Massachusetts.Google Scholar
  9. 9.
    Langton, C. G. (1986) Studying artificial life with cellular automata. Physica 22 D, 120–149.Google Scholar
  10. 10.
    Langton, C. G. (1990) Computation at the edge of chaos. Physica 42D, 12–37.MathSciNetGoogle Scholar
  11. 11.
    Langton, C. G. (1995) Artificial Life: An Overview. The MIT Press, Cambridge, Massachusetts.Google Scholar
  12. 12.
    McAlpine, K., Miranda, E., Hoggar S. (1999) Making Music with Algorithms: A Case-Study System. Computer Music J., 23 (2), 19–30.CrossRefGoogle Scholar
  13. 13.
    Miranda, E. R. (1993) Cellular Automata Music: An Interdisciplinary Project. Interface, 22, 3–21.CrossRefGoogle Scholar
  14. 14.
    Miranda, E. R. (1995) Granular Synthesis of sounds by means of a cellular automaton. Leonardo, 28 (4), 297–300.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Miranda, E. R. (1998) Computer Sound Synthesis for the Electronic Musician. Focal Press, Oxford.Google Scholar
  16. 16.
    Mitchell, M., Hraber, P. T., Crutchfield, J. P. (1993) Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Systems, 7, 89–139.zbMATHGoogle Scholar
  17. 17.
    Mitchell, M., Crutchfield, J. P., Hraber, P. T. (1994) Dynamics, computation, and the edge of chaos: A re-examinations. In G. Cowan, D. Pines and D. Melzner (Eds.) Complexity, Models and Reality, 19, Reading, MA. Santa Fe Institute Studies in the Science of Complexity, Proceedings, Addison —Wesley.Google Scholar
  18. 18.
    Mitchell, M. (1996) An Introduction to Genetic Algorithms. The MIT Press, Cambridge, Massachusetts.Google Scholar
  19. 19.
    Sims, K. (1993) Interactive Evolution of Equations for Procedural Models. The Visual Computer, 9 (8), 466–476.CrossRefGoogle Scholar
  20. 20.
    Packard, N. H. (1988) Adaptation toward the edge of chaos. In A. J. Mandell, J. A. S. Kelso and M. F. Shlesinger (Eds.), Dynamics Patterns in Complex Systems, World Scientific, Singapore.Google Scholar
  21. 21.
    Pierce, J. R. (1983) The Science of Musical Sound. Scientific American Books, Inc. New York.Google Scholar
  22. 22.
    Wolfram, S. (1984) Universality and Complexity in Cellular Automata. Physica 10D, 1–35.MathSciNetGoogle Scholar
  23. 23.
    Wuensche, A. (1999) Classifying Cellular Automata Automatically: Finding gliders, filtering and relating space-time patterns, attractors basins and the Z parameter, Complexity 4 (3), 47–66.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • E. Bilotta
    • 1
  • P. Pantano
    • 1
  • V. Talarico
    • 1
  1. 1.Centro Interdipartimentale della ComunicazioneUniversità della CalabriaItaly

Personalised recommendations