Skip to main content

Chronocoulometry

  • Chapter
Electroanalytical Methods
  • 1847 Accesses

Abstract

In 1834 Faraday suggested two fundamental laws of electrolysis. According to Faraday the amount of material deposited or evolved (m) during electrolysis is directly proportional to the current (I) and the time (t), i. e., on the quantity of electricity (Q) that passes through the solution (first law). The amount of the product depends on the equivalent mass of the substance electrolyzed (second law). (In fact, Faraday’s laws are based on two fundamental laws, i. e., on the conservation of matter and the conservation of charge.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. John Wiley, New York

    Google Scholar 

  2. Rieger PH (1987) Electrochemistry. Prentice Hall, Oxford

    Google Scholar 

  3. Galus Z (1994) Fundamentals of electrochemical analysis, 2nd edn. Harwood, Chichester

    Google Scholar 

  4. Delahay P (1954) New instrumental methods in electrochemistry. Wiley, New York

    Google Scholar 

  5. Macdonald DD (1977) Transient techniques in electrochemistry. Plenum, New York

    Book  Google Scholar 

  6. Janata J, Mark HB Jr (1969) Application of controlled-current coulometry to reaction kinetics. In: Bard AJ (ed) Electroanalytical chemistry, vol 3. Marcel Dekker, New York, pp 1–56

    Google Scholar 

  7. Harrar JE (1975) Techniques, apparatus, and analytical applications of controlled-potential coulometry. In: Bard AJ (ed) Electroanalytical chemistry, vol 8. Marcel Dekker, New York, pp 2–167

    Google Scholar 

  8. van Leeuwen HP (1982) Coulostatic pulse techniques. In: Bard AJ (ed) Electroanalytical chemistry, vol 12. Marcel Dekker, New York, pp 159 – 238

    Google Scholar 

  9. Bond AM (1980) Modern polarographic methods in analytical chemistry. Marcel Dekker, New York

    Google Scholar 

  10. Osteryoung J, O’Dea J (1986) Square-wave voltammetry. In: Bard AJ (ed) Electroanalytical chemistry, vol 14. Marcel Dekker, New York, pp 209 – 308

    Google Scholar 

  11. Montenegro MI, Querios MA, Daschbach JL (ed) (1991) Microelectrodes: theory and applications. Proc NATO ASI. Kluwer, Dordrecht

    Google Scholar 

  12. Amatore C (1995) Electrochemistry at ultramicroelectrodes. In: Rubinstein I (ed) Physical electrochemistry. Marcel Dekker, New York, pp 131–208

    Google Scholar 

  13. Heinze J (1993) Angew Chem Int Ed Engl 32: 1268

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Inzelt, G. (2005). Chronocoulometry. In: Scholz, F. (eds) Electroanalytical Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04757-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04757-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07591-9

  • Online ISBN: 978-3-662-04757-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics