Skip to main content

Rigid Geometric Structures and Representations of Fundamental Groups

  • Chapter
Rigidity in Dynamics and Geometry
  • 976 Accesses

Abstract

Let G be a simple Lie group, ℝ-rank(G) ≥ 2, and F < G a lattice. Assume that Γ acts analytically and ergodically on a compact manifold M preserving a volume and an analytic rigid geometric structure. In [6], we establish that either the Γ-action is isometric and π1(M) is finite or π1(M) admits a “large image” linear representation. We discuss the proof of this result. We also present related results which use similar techniques to show that under slightly stronger hypotheses the Γ-action is a 0-entropy extension of a standard arithmetic example. We give one new result in which this extension can be shown to be continuous rather than measurable.

Partially supported by NSF Grant DMS-9902411.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amores, A. M., Vector fields of a finite type G-structure, J. Diff. G torn. 14 (1979) 1–6.

    MathSciNet  MATH  Google Scholar 

  2. Benoist, Y., Orbites des structures rigides (d’après M. Gromov), Integrable systems and foliations, Progr. Math. 145, Birkhäuser, Boston, 1997.

    Google Scholar 

  3. Feres, R., Rigid geometric structures and actions of semisimple Lie groups, Proceedings of Strasbourg Conference, (P. Foulon, ed.), to appear.

    Google Scholar 

  4. Fisher, D., On the arithmetic structure of lattice actions on compact spaces, preprint.

    Google Scholar 

  5. Fisher, D., Whyte, K., Continuous quotients for lattice actions on compact spaces, Geom. Dedicata, to appear.

    Google Scholar 

  6. Fisher, D., Zimmer, R. J., Geometric lattice actions, entropy and fundamental groups, preprint.

    Google Scholar 

  7. Franks, J., Anosov diffeomorphism on torii, Trans. Amer. Math. Soc. 145 (1969), 117–124.

    Article  MathSciNet  MATH  Google Scholar 

  8. Gromov, M., Rigid transformation groups, Géométrie Différentielle (D. Bernard and Y. Choquet-Bruhat, eds.) Hermann, Paris 1988.

    Google Scholar 

  9. Lubotzky, A., Zimmer, R. J., Arithmetic structure of fundamental groups and actions of semisimple groups, Topology, to appear.

    Google Scholar 

  10. Margulis, G. and Qian, N., Local rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices, Ergodic Theory Dynam. Systems 21 (2001), no. 1, 121–164.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ratner, M., On Raghunathan’s measure conjectures, Ann. of Math. 134 (1991), no. 3, 545–607.

    Article  MathSciNet  MATH  Google Scholar 

  12. Shah, N., Invariant measures and orbit closures on homogeneous spaces for actions of subgroups generated by unipotent elements, Lie Groups and Ergodic Theory, Tata Inst. Fund. Res., Bombay, 1998, 220-271.

    Google Scholar 

  13. Witte, D., Measurable Quotients of Unipotent Translations on Homogeneous Spaces, Trans. Amer. Math. Soc. 354 (1994), no. 2, 577–594.

    Article  MathSciNet  Google Scholar 

  14. Zimmer, R. J., Representations of fundamental groups of manifolds with a semisimple transformation group, J. Amer. Math. Soc. 2 (1989), no. 2, 201–213.

    Article  MathSciNet  MATH  Google Scholar 

  15. Zimmer, R. J., Superrigidity, Ratner’s Theorem, and fundamental groups, Israel J. Math. 74 (1991), 199–207.

    Article  MathSciNet  MATH  Google Scholar 

  16. Zimmer, R. J., Automorphism groups and fundamental groups of geometric manifolds, Differential Geometry: Riemannian Geometry (Los Angeles, CA 1990), Amer. Math. Soc, Providence, RI (1993), 693-710.

    Google Scholar 

  17. Zimmer, R. J., Entropy and arithmetic quotients for simple automorphism groups of compact manifolds, Geom. Dedicata, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fisher, D. (2002). Rigid Geometric Structures and Representations of Fundamental Groups. In: Burger, M., Iozzi, A. (eds) Rigidity in Dynamics and Geometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04743-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04743-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07751-7

  • Online ISBN: 978-3-662-04743-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics