Geodesics and Jacobi Fields

  • Jürgen Jost
Part of the Universitext book series (UTX)


We start with a preliminary technical remark:


Vector Field Riemannian Manifold Sectional Curvature Homotopy Class Riemannian Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. I. Chavel, Riemannian geometry — A modern introduction, Cambridge University Press, 1993.Google Scholar
  2. J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North Holland, 1975.Google Scholar
  3. M. do Carmo, Riemannian geometry, Birkhäuser, 1992.Google Scholar
  4. S. Gallot, D. Huhn, and J. Lafontaine, Riemannian geometry, Springer, 1987.Google Scholar
  5. D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im Großen, Springer LNM 55, 21975.Google Scholar
  6. W. Klingenberg, Riemannian geometry, de Gruyter, 1982. P. Petersen, Riemannian geometry, Springer, 1998.Google Scholar
  7. T. Sakai, Riemannian geometry, Amer. Math. Soc., 1995. Finally, we wish to mention the stimulating survey articleGoogle Scholar
  8. M. Berger, Riemannian geometry during the second half of the twentieth century, Jber. DMV 100 (1998), 45–208zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Jürgen Jost
    • 1
  1. 1.Max Planck Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations