Skip to main content

De Rham Cohomology and Harmonic Differential Forms

  • Chapter
Riemannian Geometry and Geometric Analysis

Part of the book series: Universitext ((UTX))

  • 946 Accesses


We need some preparations from linear algebra. Let V be a real vector space with a scalar product <·, ·>, and let Λ p V be the p-fold exterior product of V. We then obtain a scalar product on Λ p V by

$$\langle {\upsilon _1} \wedge ... \wedge {\upsilon _p},{\omega _1} \wedge ... \wedge {\omega _p}\rangle = \det \left( {\langle {\upsilon _i},{\omega _j}\rangle } \right)$$

and bilinear extension to Λ P(V). If e 1, ..., e d is an orthonormal basis of V,

$${e_{{i_1}}} \wedge ... \wedge {e_{{i_p}}}with1{i_1} < {i_2} < ... < {i_p}d$$

constitute an orthonormal basis of Λ p V.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jost, J. (2002). De Rham Cohomology and Harmonic Differential Forms. In: Riemannian Geometry and Geometric Analysis. Universitext. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42627-1

  • Online ISBN: 978-3-662-04672-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics