Skip to main content

The Berlin “Protein Structure Factory” Initiative: A Technology-Oriented Approach to Structural Genomics

  • Conference paper
Data Mining in Structural Biology

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 34))

  • 115 Accesses

Abstract

The Ernst Schering Research Foundation Workshop 34 on Data Mining in Structural Biology: Signal Transduction and Beyond, which served as the basis for this volume, coincided almost perfectly with the public announcement of a “working draft” of the human genome sequence (Macilwaine 2000). This major publicity event followed closely completion of the DNA sequencing of the two smallest human chromosomes (Dunham et al. 1999; Hattori et al. 2000). In addition, a rapidly growing number of DNA sequences representing complete genomes from all kingdoms of life is known. It is anticipated that these landmark achievements will have a major impact on medicine and pharmacology (Roses 2000; Sander 2000). However, new insight does not flow directly from genomic sequences: Computer-assisted (Bork and Eisenberg 1998; Enright et al. 1999; Marcotte et al. 1999; Šali 1999; Eisenberg et al. 2000) and experimental approaches (Gerhold et al. 1999; Lockhart and Winzeler 2000; Oliver 2000; Pandey and Mann 2000; Roberts et al. 2000; Uetz et al. 2000) need to be developed and are, indeed, being developed in order to complement the vast amount of genomic information with the corresponding data pertaining to the gene products and their interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abola EE, Sussman JL, Priluski J, Manning NO (1997) Protein Data Bank archives of three-dimensional macromolecular structures. Methods Enzymol 277:556–571

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindy-alov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • BESSY GmbH (2000) http://www.bessy.de

  • Boggon TJ, Shan W-S, Santagata S, Myers SC, Shapiro L (1999) Implication of Tubby proteins as transcription factors by structure-based functional analysis. Science 286:2119–2125

    Article  PubMed  CAS  Google Scholar 

  • Bork P, Eisenberg D (1998) Sequences and topology. Deriving biological knowledge from genomic sequences. Curr Opin Struct Biol 8:331–332

    Article  CAS  Google Scholar 

  • Bork P, Koonin EV (1998) Predicting functions from protein sequences-where are the bottlenecks? Nature Genet 18:313–318

    Article  PubMed  CAS  Google Scholar 

  • Bork P, Dandekar T, Eisenhaber F, Huynen M (1998) Characterization of targeting domains by sequence analysis: glycogen-binding domains in protein phosphatases. J Mol Med 76:77–79

    Article  PubMed  CAS  Google Scholar 

  • Bork P, Hofmann K, Bucher P, Neuwald A, Altschul SF, Koonin EV (1997) A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J 11:68–76

    PubMed  CAS  Google Scholar 

  • Brownstein MJ, Trent JM, Boguski MS (1998) Functional genomics. Trends Biochem Sci (Suppl) 23:27–29

    Google Scholar 

  • BrÜnger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang J-S, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D54:905–921

    Google Scholar 

  • Burling FT, Weis WI, Flaherty KM, BrÜnger AT (1996) Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science 271:72–77

    Article  PubMed  CAS  Google Scholar 

  • BÜssow K, Cahill D, Nietfeld W, Bancroft DR, Scherzinger E, Lehrach H, Walter G (1998) A method for global protein expression and antibody screening on high-density filters of an arrayed cDNA library. Nucleic Acids Res 26:5007–5008

    Article  PubMed  Google Scholar 

  • Chothia C (1992) One thousand protein families for the molecular biologist. Nature 357:543–544

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    PubMed  CAS  Google Scholar 

  • Cork C, Padmore H, McDermott G, Hung L-W, Henderson K, Robinson A, Earnest T (1998) The macromolecular crystallography facility at the Advanced Light Source. Synchr Rad News 11:18–25

    Article  Google Scholar 

  • Deacon AM, Weeks CM, Miller R, Ealick SE (1998) The shake-and-bake structure determination of triclinic lysozyme. Proc Natl Acad Sci USA 96:9284–9289

    Article  Google Scholar 

  • Dodson EJ, Davies GJ, Lamzin VS, Murshudov GN, Wilson KS (1998) Validation tools: can they indicate the information content of macromolecular crystal structures? Structure 6:685–690

    Article  PubMed  CAS  Google Scholar 

  • Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  PubMed  CAS  Google Scholar 

  • Dunham I, Hunt AR, Collins JE, Bruskiewich R, Beare DM, Clamp M, et al (1999) The DNA sequence of human chromosome 22. Nature 402:489–495

    Article  PubMed  CAS  Google Scholar 

  • Earnest T (1995) Conceptional design report for ALS beamline 5.0. Lawrence Berkeley Laboratory PN941209–2

    Google Scholar 

  • Eickhoff H, Heller C, Lehrach H, Lorenz W (1999) Automatisierungstechniken in der Genomanalyse. Bio Spektrum 5:55–58

    Google Scholar 

  • Eickhoff H, Nordhoff E, Nietfeld W, Cahill D, Horn M, BÜssow K, Lehrach H (2000) Vom Gen zur Proteinstruktur — Hochparallele AnsÄtze zur Expressions-, Protein- und Strukturanalyse. Laborwelt 1:19–23

    Google Scholar 

  • Eisenberg D, Marcotte EM, Xenarios I, Yeates TO (2000) Protein function in the post-genomic era. Nature 405:823–826

    Article  PubMed  CAS  Google Scholar 

  • Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA (1999) Protein interaction maps for complete genomes based on gene fusion events. Nature 402:86–90

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein AV, Ptitsyn OB (1987) Why do all globular proteins fit the limited set of folding patterns? Prog Biophys Mol Biol 50:171–190

    Article  PubMed  CAS  Google Scholar 

  • Fischer D, Eisenberg D (1997) Assigning folds to the proteins encoded by the genome of Mycoplasma genitalium. Proc Natl Acad Sci USA 94:11929–11934

    Article  PubMed  CAS  Google Scholar 

  • Fortier S, Chiverton A, Glasgow J, Leherte L (1997) Critical-point analysis in protein electron-density map interpretation. Methods Enzymol 277: 131–157

    Article  PubMed  CAS  Google Scholar 

  • Gaasterland T (1998) Structural genomics taking shape. Trends Genet 14:135

    Article  PubMed  CAS  Google Scholar 

  • Gerhold D, Rushmore T, Caskey CT (1999) DNA chips: promising toys have become powerful tools. Trends Biochem Sci 24:168–173

    Article  PubMed  CAS  Google Scholar 

  • Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park H-S, Toyoda A, Ishii K, Totoki Y, Choi D-K, Soeda E, Ohki M, Takagi T, Sakaki Y, et al (2000) The DNA sequence of human chromosome 21. Nature 405:311–319

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U (2000) Structural genomics in Europe: Slow start, strong finish? Nat Struct Biol 7:940–942

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U, Frevert J, Hofmann K-P, Illing G, Maurer C, Oschkinat H, Saenger W (2000a) An integrated approach to structural genomics. Prog Biophys Mol Biol 73:347–362

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U, Frevert J, Hofmann K-P, Illing G, Oschkinat H, Saenger W, Zettl R (2000b) Linking structural iology with genome research: The Berlin “Protein Structure Factory” initiative. In: Suhai S (ed) Genomics and pro-teomics. Kluwer Academic / Plenum, New York, pp 179–189

    Google Scholar 

  • Hendrickson WA, Ogata CM (1997) Phase determination from multiwave-length anomalous diffraction measurements. Methods Enzymol 276: 494–523

    Article  CAS  Google Scholar 

  • Hochuli E, Bannwarth W, Dobeli H, Gentz R, St Über D (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Biotechnology 6:1321–1325

    Article  CAS  Google Scholar 

  • Huynen M, Doerks T, Eisenhaber F, Orengo C, Sunyaev S, Yuan Y, Bork P (1998) Homology-based fold predictions for Mycoplasma genitalium proteins. J Mol Biol 280:323–326

    Article  PubMed  CAS  Google Scholar 

  • Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S (1999) Cell-free production and stable isotope labeling of milligram quantities of proteins. FEBS Letters 442:15–19

    Article  PubMed  CAS  Google Scholar 

  • Kim S-H (1998) Shining light on structural genomics. Nat Struct Biol 5: 643–645

    Article  PubMed  CAS  Google Scholar 

  • Kim KK, Hung L-W, Yokota H, Kim R, Kim S-H (1998a) Crystal structure of eukaryotic translation initiation factor 5A from Methanococcus jannaschii at 1.8Å resolution. Proc Natl Acad Sci USA 95:10419–10424

    Article  PubMed  CAS  Google Scholar 

  • Kim KK, Kim R, Kim S-H (1998b) Crystal structure of a small heat-shock protein. Nature 394:595–599

    Article  PubMed  CAS  Google Scholar 

  • Kim R, Sandler SJ, Goldman S, Yokota H, Clark AJ, Kim S-H (1998c) Overex-pression of archaeal proteins in Escherichia coli. Biotechnol Lett 20:207–210

    Article  CAS  Google Scholar 

  • Koonin EV, Tatusov RL, Galperin MY (1998) Beyond complete genomes: from sequence to structure and function. Curr Opin Struct Biol 8:355–363

    Article  PubMed  CAS  Google Scholar 

  • Lamzin VS, Wilson KS (1997) Automated refinement for protein crystallography. Methods Enzymol 277:269–305

    Article  PubMed  CAS  Google Scholar 

  • Lilie H, Schwarz E, Rudolph H (1998) Advances in refolding of proteins produced in E. coli. Curr Opin Biotechnol 9:497–501

    Article  PubMed  CAS  Google Scholar 

  • Lim J-H, Yu YG, Han YS, Cho S-J, Ahn B-Y, Kim S-H, Cho Y (1997) The crystal structure of a Fe-superoxide dismutase from the hyperthermophile Aquifex pyrophilus at 1.9A resolution: Structural basis for thermostability. J Mol Biol 270:259–274

    Article  PubMed  CAS  Google Scholar 

  • Lockhart DJ, Winzeler, EA (2000) Genomics, gene expression and DNA arrays. Nature 405:827–836

    Article  PubMed  CAS  Google Scholar 

  • Macilwaine, C (2000) World leaders heap praise on human genome landmark. Nature 405:983–984

    Article  Google Scholar 

  • Maier E, Maier-Ewert S, Ahmadi R, Curtis J, Lehrach H (1994) Application of robotic technology to automated sequence fingerprint analysis by oligonucleotide hybridisation. J Biotech 35:191–203

    Article  CAS  Google Scholar 

  • Maier E, Maier-Ewert S, Lehrach H (1997) Automated array technologies for gene expression profiling. Drug Discov Today 2:315–324

    Article  Google Scholar 

  • Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402:83–86

    Article  PubMed  CAS  Google Scholar 

  • Montelione GT, Anderson S (1999) Structural genomics: keystone for a Human Proteome Project. Nat Struct Biol 6:11–12

    Article  PubMed  CAS  Google Scholar 

  • Mueller U, Nyarsik L, Horn M, Rauth H, Przewieslik T, Saenger W, Lehrach H, Eickhoff H (2000) Development of a technology for automation and miniaturisation of protein crystallisation. J Biotechnol 85:7–14

    Article  Google Scholar 

  • Museghian AR, Bassett DE Jr, Boguski M, Bork P, Koonin EV (1997) Posi-tionally cloned human disease genes: New motifs and evolutionary conservation. Proc Natl Acad Sci USA 94:5831–5836

    Article  Google Scholar 

  • Nilges M, Macias MC, O’Donoghue SI, Oschkinat H (1997) Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from β-spectrin. J Mol Biol 269: 408–422

    Article  PubMed  CAS  Google Scholar 

  • Ogata CM (1998) MAD phasing grows up. Nat Struct Biol 5:638–640

    Article  PubMed  CAS  Google Scholar 

  • Oliver S (2000) Guilt-by-association goes global. Science 403:601–603

    CAS  Google Scholar 

  • Orengo CA, Jones DT, Thornton JM (1994) Protein superfamilies and protein superfolds. Nature 372:631–634

    Article  PubMed  CAS  Google Scholar 

  • Oschkinat H, Croft D (1994) Automated assignment of multidimensional nuclear magnetic resonance spectra. Methods Enzymol 239:308–318

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  PubMed  CAS  Google Scholar 

  • Perrakis A, Morris R, Lamzin VS (1999) Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6:458–463

    Article  PubMed  CAS  Google Scholar 

  • Rice DW, Eisenberg D (1997) A 3D-ID substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence. J Mol Biol 267:1026–1038

    Article  PubMed  CAS  Google Scholar 

  • Roberts C J, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA, He YD, Dai H, Walker WL, Hughes TR, Tyers M, Boone C, Friend SH (2000) Signaling and circuitry of multiple МAРK pathways revealed by a matrix of global gene expression profiles. Science 287:873–880

    Article  PubMed  CAS  Google Scholar 

  • Roses AD (2000) Pharmacogenetics and the practice of medicine. Nature 405:457–465

    Article  Google Scholar 

  • Rudolph R, Lilie H (1996) In vitro folding of inclusion body proteins. FASEB J 10:49–56

    PubMed  CAS  Google Scholar 

  • Sali A (1998) 100,000 protein structures for the biologist. Nat Struct Biol 5:1029–1032

    Article  PubMed  CAS  Google Scholar 

  • Sali A (1999) Functional links between proteins. Nature 402:23–26

    Article  PubMed  CAS  Google Scholar 

  • Sander C (2000) Genomic medicine and the future of health care. Science 287:1977–1978

    Article  PubMed  CAS  Google Scholar 

  • Schmidt TGM, Skerra A (1994) One-step affinity purification of bacterially produced proteins by means of the “Strep-tag” and immobilized recombinant core streptavidin. J Chromatogr A 676:337–345

    Article  PubMed  CAS  Google Scholar 

  • Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28:231–234

    Article  PubMed  CAS  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  PubMed  CAS  Google Scholar 

  • Shapiro L, Lima CD (1998) The Argonne Structural Genomics Workshop: La-maze class for the birth of a new science. Structure 6:265–267

    Article  PubMed  CAS  Google Scholar 

  • Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    Article  PubMed  CAS  Google Scholar 

  • Skinner JM, Sweet RM (1998) Integrated software for a macromolecular crystallography synchrotron beamline. Acta Crystallogr D54:718–725

    CAS  Google Scholar 

  • Sowdhamini R, Rufino SD, Blundell TL (1996) A database of globular protein structural domains: clustering of representative family members into similar folds. Fold Des 1:209–220

    Article  PubMed  CAS  Google Scholar 

  • Svensson LA, Stahl K, Cerenius Y, Oskarsson Ä, Albertsson J, Liljas A (1997) A new beamline for crystallographic measurements at the MAX II synchrotron, Lund, Sweden. Annual Report 182

    Google Scholar 

  • Tejero, J., Monleon D, Feng W, Celda B, Montelione GT (1999) HYPER: A hierarchical algorithm involving progressive application of conformational constraints for automatic determination of protein dihedral angles and stereospecific methylene resonance assignments from NMR data. J Biomol NMR 15:251–264

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger TC (2000) Structural genomics in N. America. Nat Struct Biol 7:935–939

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger TC, Berendzen J (1999) Automated structure solution for MIR and MAD. Acta Crystallogr D55:849–861

    CAS  Google Scholar 

  • Terwilliger TC, Waldo G, Peat TS, Newman JM, Chu K, Berendzen J (1998) Class-directed structure determination: foundation for a protein structure initiative. Protein Sci 7:1851–1856

    Article  PubMed  CAS  Google Scholar 

  • Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  PubMed  CAS  Google Scholar 

  • Vukmirovic OG, Tilghman SM (2000) Exploring genome space. Nature 405:820–822

    Article  PubMed  CAS  Google Scholar 

  • Waldo GS, Standish BM, Berendzen J, Terwilliger TC (1999) Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol 17:691–695

    Article  PubMed  CAS  Google Scholar 

  • Weber PC (1997) Overview of protein crystallization methods. Methods Enzy-mol 276:13–22

    Article  CAS  Google Scholar 

  • Wittmann-Liebold B, Scheler C, Wurzel C (1999) Automation in der Proteinanalytik. Biospektrum 5:48–53

    Google Scholar 

  • Yokoyama S, Hirota H, Kigawa T, Yabuki T, Shirouza M, Terada T, Nishimura Y, Masui R, Kuramitsu S (2000) Structural genomics projects in Japan. Nat Struct Biol 7:943–945

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, Schultz J, Mlodzik M, Bork P (1997) Secreted fringe-like signaling molecules may be glycosyltransferases. Cell 88:9–11

    Article  PubMed  CAS  Google Scholar 

  • Zou J-Y, Jones TA (1996) Towards the automatic interpretation of macro-molecular electron density maps: qualitative and quantitative matching of protein sequence to map. Acta Crystallogr D52:833–841

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heinemann, U. (2001). The Berlin “Protein Structure Factory” Initiative: A Technology-Oriented Approach to Structural Genomics. In: Schlichting, I., Egner, U. (eds) Data Mining in Structural Biology. Ernst Schering Research Foundation Workshop, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04645-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04645-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04647-0

  • Online ISBN: 978-3-662-04645-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics