Skip to main content

Functional Imaging of Thyroid Cancer

  • Chapter
Thyroid Cancer
  • 99 Accesses

Abstract

Due to their relatively unaggressive biological behavior, most differentiated thyroid carcinomas have a good prognosis [7, 28]. This holds true even for patients with lung metastases, particularly in cases with disseminated metastatic sites that are radioiodine-positive. Therefore, thyroid cancer is overall a rare cause of cancer-associated death. Serum thyroglobulin measurement is the most sensitive method to detect recurrence of differentiated thyroid carcinoma during follow-up [39]. Radioiodine scintigraphy can be used as a highly specific method to visualize tumor tissue. But in many cases, particularly in poorly differentiated cancer and in Hürthle cell carcinoma, radioiodine uptake is decreased or absent, owing to several mechanisms. Particularly DNA changes, encoding the Na+/I- symporter, have to be considered. Therefore, the sensitivity of radioiodine scintigraphy is decreased from about 70% to less than 50% during the clinical course [37, 46]. Although therapeutic options are often limited to some extent in patients with radioiodine-negative metastases, correct staging is very important to plan further diagnostic and therapeutic steps. But also in cases with known radioiodine-positive tumor tissue, other functional techniques are clinically useful to prove or exclude additional radioiodine-negative tumor sites, which cannot be influenced by further radioiodine treatments. In some cases, recurrence or metastases are suspected during follow-up, even if no increased thyroglobulin values are observed. The reason might be pathologic thyroglobulin recovery values or the existence of very poorly differentiated cell lines which have lost the capability of Tg synthesis. Tumor-specific functional imaging techniques are necessary to evaluate equivocal morphologic alterations in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler LP, Bloom AD (1993) Positron emission tomography of thyroid masses. Thyroid 3: 195 - 200

    Article  PubMed  CAS  Google Scholar 

  2. Arturi F, Russo D, Schlumberger M, du-Villard JA, Caillou B, Vigneri P, et al. (1998) Iodide symporter gene expression in human thyroid tumors. J Clin Endocrinol Metab 83: 2493 - 2496

    Article  PubMed  CAS  Google Scholar 

  3. Balone HR, Fing-Bennett D, Stoffer SS (1992) 99mTc-sestamibi uptake by recurrent Hürthle cell carcinoma of the thyroid. J Nucl Med 33: 1393 - 1395

    Google Scholar 

  4. Bangard M, Bender H, Grünwald F, et al. (1999) Myocardial uptake of technetium-99m-furifosmin (Q12) versus technetium-99m-sestamibi ( MIBI ). Nuklearmedizin 38: 189-191

    Google Scholar 

  5. Bauer W, Briner U, Doepfner W (1982) SMS-201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 31: 1133 - 1140

    Article  PubMed  CAS  Google Scholar 

  6. Becker W, Schrell U, Buchfelder M, Hensen J, Wendler J, Gramatzki M, et al. (1995) Somatostatin receptor expression in the thyroid demonstrated with 111In-octreotide scintigraphy. Nuklearmedizin 34: 100 - 103

    PubMed  CAS  Google Scholar 

  7. Biersack HJ, Hotze A (1991) The clinician and the thyroid. Eur J Nucl Med 18: 761 - 778

    Article  PubMed  CAS  Google Scholar 

  8. Brandt-Mainz K, Müller SP, Sonnenschein W, Bockisch A (1998) Technetium-99m-furifosmin in the follow-up of differentiated thyroid carcinoma. J Nucl Med 39: 1536 - 1541

    PubMed  CAS  Google Scholar 

  9. Briele B, Hotze AL, Kropp J, Bockisch A, Overbeck B, Grünwald F, et al. (1991) A comparison of 201T1 and 99mTc-MIBI in the follow-up of differentiated thyroid carcinoma. Nuklearmedizin 30: 115 - 124

    PubMed  CAS  Google Scholar 

  10. Briele B, Willkomm P, Grünwald F, Ruhlmann J, Biersack HJ (1999) Imaging of secondary pulmonary changes in central bronchial carcinomas by F-18-FDG-PET. Nuklearmedizin 38• 323 - 327

    Google Scholar 

  11. Dadparvar S, Chevres A, Tulchinsky M, Krishna-Badrinath L, Khan AS, Slizofski WJ (1995) Clinical utility of technetium-99m methoxisobutylisonitrile imaging in differentiated thyroid carcinoma: comparison with thallium-201 and iodine-131 Na scintigraphy, and serum thyroglobulin quantitation. Eur J Nucl Med 22: 1330 - 1338.

    Article  PubMed  CAS  Google Scholar 

  12. Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H (1997) Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 24: 1342 - 1348

    Article  PubMed  CAS  Google Scholar 

  13. Farahati J, Reiners C, Stuschke M, Müller SP, Stüben G, Sauerwein W, et al. (1996) Differentiated thyroid cancer. Impact of adjuvant external radiotherapy in patients with perithyroidal tumor infiltration (stage pT4). Cancer 77: 172 - 180

    Article  PubMed  CAS  Google Scholar 

  14. Feine U, Lietzenmayer R, Hanke JP, Held J, Wöhrle H, Müller-Schauenburg W (1996) Fluorine-18-FDG and iodine-131-Iodide uptake in thyroid cancer. J Nucl Med 37: 1468 - 1472

    PubMed  CAS  Google Scholar 

  15. Foldes I, Levay A, Stotz G (1993) Comparative scanning of thyroid nodules with technetium-99m pertechnetate and technetium-99m methoxyisobutylisonitrile. Eur J Nucl Med 20: 330 - 333

    Article  PubMed  CAS  Google Scholar 

  16. Gallowitsch HJ, Mikosch P, Kresnik E, Unterweger 0, Gomez I, Lind P (1998) Thyroglobulin and low-dose iodine-131 and technetium-99m-tetrofosmin whole-body scintigraphy in differentiated thyroid carcinoma. J Nucl Med 39: 870 - 875

    PubMed  CAS  Google Scholar 

  17. Görges R, Kahaly G, Müller-Brand J, et al. (1999) Examination of the somatostatin receptor status in non-medullary thyroid cancer. Nuklearmedizin 38: 15 - 23

    PubMed  Google Scholar 

  18. Grünwald F, Schomburg A, Bender H, Klemm E, Menzel C, Bultmann T, et al. (1996) Fluorine-18 fluorodeoxyglucose positron emission tomography in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 23: 312 - 319

    Article  PubMed  Google Scholar 

  19. Grünwald F, Menzel C, Bender H, Palmedo H, Willkomm P, Ruhlmann J, et al. (1997) Comparison of 18FDG-PET with 131iodine and 99mTc-sestamibi scintigraphy in differentiated thyroid cancer. Thyroid 7: 327 - 335

    Article  PubMed  Google Scholar 

  20. Grünwald F, Menzel C, Bender H, Palmedo H, Otte R, Fimmers R, et al. (1998) Redifferentiation therapy-induced radioiodine uptake in thyroid cancer. J Nucl Med 39: 1903 - 1906

    PubMed  Google Scholar 

  21. Grünwald F, Kälicke T, Feine U, et al. (1999) Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med 26: 1547 - 1552

    Article  PubMed  Google Scholar 

  22. Gulec SA, Serafini AN, Sridhar KS, Peker KR, Gupta A, Goodwin WJ, et al. (1998) Somatostatin receptor expression in Hürthle cell cancer of the thyroid. J Nucl Med 39: 243 - 245

    PubMed  CAS  Google Scholar 

  23. Hoefnagel CA, Delprat CC, Marcuse HR, deVijlder JJ (1986) Role of thallium-201 total-body scintigraphy in follow-up of thyroid carcinoma. J Nucl Med 27: 1854 - 1857

    PubMed  CAS  Google Scholar 

  24. Joensuu H, Ahonen A, Klemi PJ (1988) 18F-fluorodeoxyglucose imaging in preoperative diagnosis of thyroid malignancy. Eur J Nucl Med 13: 502 - 506

    Google Scholar 

  25. Koizumi M, Taguchi H, Goto M, Nomura T, Watari T (1993) Thallium-201 scintigraphy in the evaluation of thyroid nodules. A retrospective study of 246 cases. Ann Nucl Med 7: 147 - 152

    Article  PubMed  CAS  Google Scholar 

  26. Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N (1994) Microautoradiographic study for the differentiation of intratumoral macrophages, granulation tissues and cancer cells by the dynamics of fluorine-18-fluorodeoxyglucose uptake. J Nucl Med 35: 104 - 112

    PubMed  CAS  Google Scholar 

  27. Lamberts SW, Koper JW, Reubi JC (1987) Potential role of somatostatin analogues in the treatment of cancer. Eur J Clin Invest 17: 281 - 287

    Article  PubMed  CAS  Google Scholar 

  28. Lerch H, Schober O, Kuwert T, Saur HB (1997) Survival of differentiated thyroid carcinoma studied in 500 patients. J Clin Oncol 15: 2067 - 2075

    PubMed  CAS  Google Scholar 

  29. Lind P (1999) Multi-tracer imaging of thyroid nodules: is there a role in the preoperative assessment of nodular goiter? Eur J Nucl Med 26: 795 - 797

    Article  PubMed  CAS  Google Scholar 

  30. Matthaei S, Trost B, Hamann A, Kausch C, Benecke H, Greten H, et al. (1995) Effect of in vivo thyroid hormone status on insulin signalling and GLUT1 and GLUT4 glucose transport systems in rat adipocytes. J Endocrinol 144: 347 - 357

    Article  PubMed  CAS  Google Scholar 

  31. Mezosi E, Bajnok L, Gyory F, Varga J, Sztojka I, Szabo J, Galuska L, Leovey A, Kakuk G, Nagy E (1999) The role of technetium-99m methoxyisobutylisonitrile scintigraphy in the differential diagnosis of cold thyroid nodules. Eur J Nucl Med 26: 798 - 803

    Article  PubMed  CAS  Google Scholar 

  32. Mueckler M (1994) Facilitative glucose transporters. Eur J Biochem 219: 713 - 725

    Article  PubMed  CAS  Google Scholar 

  33. Nemec J, Nyvltova O, Blazek T, Vlcek P, Racek P, Novak Z, et al. (1996) Positive thyroid cancer scintigraphy using technetium-99m methoxyisobutylisonitrile. Eur J Nucl Med 1996; 23: 69 - 71

    Article  Google Scholar 

  34. Ohnishi T, Noguchi S, Murakami N, Jinnouchi S, Hoshi H, Futami S et al. (1993) Detection of recurrent thyroid cancer: MR versus thallium-201 scintigraphy. AJNR Am J Neuroradiol 14: 1051 - 1057

    PubMed  CAS  Google Scholar 

  35. Piwinica-Worms D, Kronauge JF, Chiu ML (1990) Uptake and retention of hexakis (2methoxyisobutyl isonitrile) technetium ( I) in cultured chick myocardial cells, mitochondrial and plasma membrane potential dependence. Circulation 82: 1826-1838

    Google Scholar 

  36. Raue F (1997) Chemotherapie bei Schilddrüsenkarzinomen: Indikation and Ergebnisse. Onkologe 3: 55 - 58

    Article  Google Scholar 

  37. Reiners C, Reimann J, Schaffer R, Baum K, Becker W, Eilles C, et al. (1984) Metastatic differentiated thyroid cancer. Diagnostic accuracy of thyroglobulin-RIA in comparison with í131-whole-body scintigraphy. RÖFO Fortschr Geb Röntgenstr Nuklearmed 141: 306 - 313

    Article  PubMed  CAS  Google Scholar 

  38. Saito T, Endo T, Kawaguchi A, Ikeda M, Katoh R, Kawaoi A, et al. (1998) Increased expression of the sodium/iodide symporter in papillary thyroid carcinomas. J Clin Invest 101: 1296 - 1300

    Article  PubMed  CAS  Google Scholar 

  39. Schlumberger M, Fragu P, Gardet P, Lumbroso J, Vilot D, Parmentier C (1991) A new immunoradiometric assay ( IRMA) system for thyroglobulin measurement in the follow-up of thyroid cancer patients. Eur J Nucl Med 18: 153-157

    Google Scholar 

  40. Scott GC, Meier DA, Dickinson CZ (1995) Cervical lymph node metastasis of thyroid papillary carcinoma imaged with fluorine-18-FDG, technetium-99m-pertechnetate and iodine131-sodium iodide. J Nucl Med 36: 1843 - 1845

    PubMed  CAS  Google Scholar 

  41. Sisson JC, Ackermann RJ, Meyer MA (1993) Uptake of 18-fluoro-2-deoxy-D-glucose by thyroid cancer: implications for diagnosis and therapy. J Clin Endocrin Metabol 77: 1090 - 1094

    Article  CAS  Google Scholar 

  42. Unal S, Menda Y, Adalet I, Bortepe H, Özbey N, Alagöl F, et al. (1998) Thallium-201, technetium-99-tetrofosmin, and iodine-131 in detecting differentiated thyroid carcinoma metastases. J Nucl Med 39: 1897 - 1902

    PubMed  CAS  Google Scholar 

  43. Valli N, Catargi B, Ronci N, et al. (1999) Evaluation of indium-111 pentetreotide somatostatin receptor scintigraphy to detect recurrent thyroid carcinoma in patients with negative radioiodine scintigraphy. Thyroid 9: 583 - 589

    Article  PubMed  CAS  Google Scholar 

  44. VanSorge-vanBoxtel RAJ, VanEck-Smit BLF, Goslings BM (1993) Comparison of serum thyroglobulin, I-131 and TI-201 scintigraphy in the postoperative follow-up of differentiated thyroid cancer. Nucl Med Commun 14: 365 - 372

    Article  Google Scholar 

  45. Wang W, Macapinlac H, Larson SM, et al. (1999) [18F]-2-Fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic (131)í whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 84: 2291 - 2302

    Google Scholar 

  46. Warburg 0 (1956) On the origin of cancer cells. Science 123: 309 - 314

    Article  Google Scholar 

  47. Yoshioka T, Takahashi H, Oikawa H, Maeda S, Wakui A, Watanabe T, et al. (1994) Accumulation of 2-deoxy-2[18F]fluoro-D-glucose in human cancer heterotransplanted in nude mice: comparison between histology and glycolytic status. J Nucl Med 35: 97 - 103

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grünwald, F. (2001). Functional Imaging of Thyroid Cancer. In: Biersack, HJ., Grünwald, F. (eds) Thyroid Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04610-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04610-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04612-8

  • Online ISBN: 978-3-662-04610-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics