Skip to main content

Improving Expression of scFv Fragments by Coexpression of Periplasmic Chaperones

  • Chapter
Antibody Engineering

Part of the book series: Springer Lab Manuals ((SLM))

  • 1166 Accesses

Abstract

The periplasmic expression in E. coli has become the standard technology for preparing functional antibody fragments in a rapid way (Skerra and Plückthun 1988, Plückthun et al. 1996). The consequences of choosing Fab or scFv fragments, the properties of suitable expression vectors or the influence of the E. coli strain have been extensively summarized elsewhere (Plückthun et al. 1996). Even when paying attention to all these components and experimental conditions, it has become clear that the yield of recombinant antibody fragments is variable and these variations are a direct consequence of their primary sequences (Wörn and Plückthun 2001). The periplasmic folding is the yield limiting step and is most strongly influenced by the sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bothmann H, Plückthun A (1998) Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nature Biotechnol 16:376–380

    Article  CAS  Google Scholar 

  • Bothmann H, Plückthun A(2000) The periplasmic E. coli peptidylprolyl cis, trans-isomerase FkpA (I): increased functional expression of antibody fragments with and without cis-prolines. J Biol Chem 275:17100–17105

    Article  PubMed  CAS  Google Scholar 

  • de Cock H, Schäfer U, Poteger M, Demel R, Müller M, Tommassen J (1999) Affinity of the periplasmic chaperone Skp of Escherichia coli for phospholipids, lipopolysaccharides and non-native outer membrane proteins. Eur J Biochem 259:96–103

    Article  PubMed  Google Scholar 

  • Hayhurst A, Harris WJ (1999) Escherichia coli Skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments

    Google Scholar 

  • Jung S, Plückthun A (1997) Improving in vivo folding and stability of a single-chain Fv antibody fragment by loop grafting. Prot Eng 10:959–966

    Article  CAS  Google Scholar 

  • Jung S, Honegger A, Plückthun A (1999) Selection for improved protein stability by phage display. J Mol Biol 294:163–180

    Article  PubMed  CAS  Google Scholar 

  • Knappik A, Plückthun A (1995) Engineered turns of a recombinant antibody improve its in vivo folding. Prot Eng 8:81–89

    Article  CAS  Google Scholar 

  • Krebber A, Bornhauser S, Burmester J, Honegger A, Willuda J, Bosshard HR, Plückthun A (1997) Reliable cloning of functional antibody domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Immunol Meth 201:35–55

    Article  CAS  Google Scholar 

  • Missiakas D, Betton JM, Raina S (1996) New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol 21:871–884

    Article  CAS  Google Scholar 

  • Nieba L, Honegger A, Krebber C, Plückthun A (1997) Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Prot Eng 10:435–444

    Article  CAS  Google Scholar 

  • Plückthun A, Krebber A, Krebber C, Horn U, Knüpfer U, Wenderoth R, Nieba L, Proba K, Riesenberg D (1996) Producing antibodies in Escherichia coli: From PCR to fermentation. In: McCafferty J, Hoogenboom H, Chiswell D (eds) Antibody Engineering. A practical approach, Oxford University Press, Oxford, pp 203–252

    Google Scholar 

  • Proba K, Wörn A, Honegger A, Plückthun A (1998) Antibody scFv fragments without disulfide bonds made by molecular evolution. J Mol Biol 275:245–253

    Article  PubMed  CAS  Google Scholar 

  • Ramm K, Plückthun A (2000) The periplasmic E. coli peptidyl-prolyl isomerase FkpA (II): isomerase-independent chaperone activity in vitro. J Biol Chem 275:17106–17113

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schäfer U, Beck K, Müller M (1999) Skp, a molecular chaperone of Gram-negative bacteria, is required for the formation of soluble periplasmic intermediates or outer membrane proteins. J Biol Chem 274:24567–24574

    Article  PubMed  Google Scholar 

  • Skerra A, Plückthun A (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 263:14315–14322

    Google Scholar 

  • Thorpe SJ, Kerr MA (1994) Common immunological techniques: ELISA, blotting, immunohistochemistry and immunocytochemistry. In: Kerr MA, Thorpe R (eds) Immunochemistry. Labfax, BIOS Scientific Publishers Limited, Oxford, pp 175–209

    Google Scholar 

  • Willuda J, Honegger A, Waibel R, Schubiger PA, Stahel R, Zangenmeister-Wittke U, Plückthun A (1999) High thermal stability is essential for tumor targeting of antibody fragments: Engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Research 59:5758–5767

    PubMed  CAS  Google Scholar 

  • Wörn A, Plückthun A (2001) Stability engineering of antibody single-chain Fv fragments. J Mol Biol, 305: 989–1010

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Plückthun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bothmann, H., Plückthun, A. (2001). Improving Expression of scFv Fragments by Coexpression of Periplasmic Chaperones. In: Kontermann, R., Dübel, S. (eds) Antibody Engineering. Springer Lab Manuals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04605-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04605-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41354-7

  • Online ISBN: 978-3-662-04605-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics