Skip to main content

Fluorescence Diagnosis with δ-Aminolevulinic Acid-Induced Porphyrins in Dermatology

  • Chapter
Dermatological Phototherapy and Photodiagnostic Methods

Abstract

Various examination methods are used in daily dermatological practice to assess the different types of skin diseases. Dermatoscopy is used to evaluate pigmented skin lesions mainly, the ultrasound is applied to reveal the pathology of lymph nodes and to measure the thickness of skin lesions such as sclerodermic or neoplastic ones. However, histopathological examination is the most important diagnostic procedure in dermatology to ensure the clinical diagnosis of any skin disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumgartner R, Fuchs N, Jocham D, Stepp H, Unsöld E (1992) Photokinetics of fluorescent polyporphyrin photofrin II in normal rat tissue and rat bladder tumor. Photochem Photobiol 55569–574

    Google Scholar 

  2. Becker-Wegerich P, Fritsch C, Neuse W, Schulte KW, Ruzicka T, Goerz G (1995) Effektive Kryochirurgie oberflächlicher Hauttumoren unter photodynamischer Diagnostik. H G 70: 891–895

    Google Scholar 

  3. Bickers DR, Keogh L, Rifkind AB, Harber LC, Kappas A (1977) Studies in porphyria. VI.Biosynthesis of porphyrins in mammilian skin and in the skin of porphyric patients. J Invest Dermatol 68: 5–9

    Google Scholar 

  4. Bloomer JR, Brenner DA, Mahoney MJ (1977) Study of factors causing excess protoporphyrin accumulation in cultured skin fibroblasts from patients with protoporphyria. J Clin Invest 60x354–1361

    Google Scholar 

  5. Bolsen K, Lang K, Verwholt B, Fritsch C, Goerz G (1996) In vitro incubation of porphyrin biosynthesis in various human cells after incubation with b-aminolevulinic acid. Arch Dermatol Res 288: 320

    Google Scholar 

  6. Braichotte DR, Wagnieres GA, Bays R, Monnier P, van den Bergh HE (1995) Clinical pharmacokinetic studies of photofrin by fluorescence spectroscopy in the oral cavity, the esophagus, and the bronchi. Cancer 75: 2768–2778

    Google Scholar 

  7. Bruls WAG, Slaper H, van der Leun JC, Berrens L (1984) Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths. Photochem Photobiol 40: 485–494

    Article  PubMed  CAS  Google Scholar 

  8. Cairnduff F, Stringer MR, Hudson EJ, Ash DV, Brown SB (1994) Superficial photodynamic therapy with topical 5-aminolevulinic acid for superficial primary and secondary skin cancer. Br J Cancer 69: 605–608

    Article  PubMed  CAS  Google Scholar 

  9. Denk H, Kalt R, Abdelfattah-Gad M, Meyer UA (1981) Effect of griseofulvin on 5aminolevulinate synthase and on ferrochelatase in mouse liver neoplastic nodules. Cancer Res 41: 1535–1538

    PubMed  CAS  Google Scholar 

  10. Doiron DR, Profio E, Vincent RG, Dougherty TJ (1979) Fluorescence bronchoscopy for detection of lung cancer. Chest 76: 27–32

    Article  PubMed  CAS  Google Scholar 

  11. Dougherty TJ (1987) Photosensitizers: therapy and detection of malignant tumors. Photochem Photobiol 45: 879–889

    Article  PubMed  CAS  Google Scholar 

  12. Figge FHJ, Weiland GS, Manganiello LOJ (1948) Cancer detection and therapy: affinity of neoplastic, embryonic, and traumatized tissues for porphyrins and metalloporphyrins. Proc Soc Exp Biol Med 68: 640–641

    PubMed  CAS  Google Scholar 

  13. Fijan S, Hönigsmann H, Ortel R (1995) Photodynamic therapy of epithelial skin tumours using delta-aminolevulinic acid and desferrioxamine. Br J Dermatol 133: 282–288

    Google Scholar 

  14. Fritsch C, Abels C, Goetz AE, Stahl W, Bolsen K, Ruzicka T, Goerz G, Sies H (1997) Porphyrins preferentially accumulate in a melanoma following intravenous injection of 5-aminolevulinic acid. Biol Chem 378: 51–57

    Article  PubMed  CAS  Google Scholar 

  15. Fritsch C, Batz J, Bolsen K, Schulte KW, Ruzicka T, Goerz G (1994) Exogenous 8aminolevulinic acid induces the porphyrin biosynthesis in human skin organ cultures with different porphyrin patterns in normal and malignant human tissue. SPIE Proc 2371: 215–220

    Google Scholar 

  16. Fritsch C, Becker-Wegerich PM, Menke M, Ruzicka T, Goerz G, Olbrisch RR (1997) Successful surgery of multiple recurrent basal cell carcinomas guided by photodynamic diagnosis. Aesthetic Plast Surg 21:437–439

    Google Scholar 

  17. Fritsch C, Becker-Wegerich PM, Schulte KW, Neuse W, Lehmann P, Ruzicka T, Goerz G (1996) Photodynamische Therapie und Mamillenplastik eines großflächigen Rumpfhautbasalioms der Mamma. Effektive Kombinationstherapie unter photodynamischer Diagnostik. Hautarzt 47: 438–442

    Google Scholar 

  18. Fritsch C, Goerz G, Ruzicka T (1998) Photodynamic therapy in dermatology. A review. Arch Dermatol 134: 207–214

    Google Scholar 

  19. Fritsch C, Homey B, Stahl W, Lehmann P, Ruzicka T, Sies H (1998) Preferential relative porphyrin enrichment in solar keratoses upon topical application of 8aminolevulinic acid methylester. Photochem Photobiol 68: 218–221

    PubMed  CAS  Google Scholar 

  20. Fritsch C, Lang K, Neuse W, Ruzicka T, Lehmann P (1998) Photodynamic diagnosis and therapy in dermatology. Skin Pharmacol Appl Skin Physiol 11:358–373

    Google Scholar 

  21. Fritsch C, Lehmann P, Bolsen K, Ruzicka T, Goerz G (1994) Photodynamische Diagnostik und Photodynamische Therapie von aktinischen Keratosen. Z Hautkr 69: 713–716

    Google Scholar 

  22. Fritsch C, Lehmann P, Stahl W, Schulte KW, Blohm E, Lang K, Sies H, Ruzicka T (1999) Optimum porphyrin accumulation in epithelial skin tumours and psoriatic lesions after topical application of 8-aminolaevulinic acid. Br J Cancer 79: 1603–1608

    Article  PubMed  CAS  Google Scholar 

  23. Fritsch C, Stege S, Saalmann G, Goerz G, Ruzicka T, Krutmann J (1997) Green light is effective and less painful than red light in photo dynamic therapy of facial solar keratoses. Photodermatol Photoimmunol Photomed 13: 181–185

    Article  PubMed  CAS  Google Scholar 

  24. Fritsch C, Verwohlt B, Bolsen K, Ruzicka T, Goerz G (1996) Influence of topical photo-dynamic therapy with 5-aminolevulinic acid on the porphyrin metabolism. Arch Dermatol Res 288: 517–521

    Article  PubMed  CAS  Google Scholar 

  25. Goerz G, Link-Mannhardt A, Bolsen K, Zumdick M, Fritsch C, Schürer NY (1995) Porphyrin concentrations in various human tissues. Exp Dermatol 4: 218–220

    Google Scholar 

  26. Grant EW, Hopper C, MacRobert AJ, Speight PM, Bown SG (1993) Photodynamic therapy of oral cancer: photosensitisation with systemic aminolaevulinic acid. Lancet 324x47–148

    Google Scholar 

  27. Gregorie HG Jr, Horger EO, Ward JL (1968) Hematoporphyrin-derivate fluorescence in malignant neoplasms. Ann Surg 167: 820–828

    Article  PubMed  Google Scholar 

  28. Hanania J, Malik Z (1992) The effect of EDTA and serum on endogenous porphyrin accumulation and photodynamic sensitization of human K562 leukemic cells. Cancer Lett 65: 127–131

    Article  PubMed  CAS  Google Scholar 

  29. Hua Z, Gibson SL, Foster TH, Hilf R (1995) Effectiveness of ó-Aminolevulinic acid-induced protoporphyrin as a photosensitizer for photodynamic therapy in vivo. Cancer Res 55: 1723–1731

    Google Scholar 

  30. Jesionek A, von Tappeiner H (1905) Zur Behandlung von Hautcarcinome mit fluorescierenden Stoffen. Arch Klin Med 82: 72–76

    Google Scholar 

  31. Kappas A, Sassa S, Galbrath RA, Nordmann Y (1989) The porphyrias. In: Scriver CR, Beaudet AL, Sly WS, Volle D (eds) The metabolic basis of inherited diseases, 6th edn. McGraw-Hill, New York, pp 1305–1365

    Google Scholar 

  32. Kennedy JC, Pottier RH (1992) Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol 14: 275–292

    Article  CAS  Google Scholar 

  33. Kennedy JC, Pottier RH, Pross DC (1990) Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol 6: 143–148

    Article  CAS  Google Scholar 

  34. Kinsey JH, Cortese DA, Sanderson DR (1978) Detection of hematoporphyrin fluorescence during fiberoptic bronchoscopy to localize early bronchogenic carcinoma. Mayo Clin Proc 53594–600

    Google Scholar 

  35. Kriegmair M, Baumgartner R, Knuechel R, Ehsan R, Lumper W, Hofstetter A (1994) Fluorescence cystoscopy–a new method in diagnosis of bladder cancer. Urology 44836–841

    Google Scholar 

  36. Kriegmair M, Baumgartner R, Knöchel R, Stepp H, Hofstädter F, Hofstetter A (1996) Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. J Urol 155: 105–109

    Article  PubMed  CAS  Google Scholar 

  37. Lam S, Palcic B, McLean D, Hung J, Korbelik M, Profio E (1990) Detection of early lung cancer using low dose Photofrin II. Chest 97: 333–337

    Article  PubMed  CAS  Google Scholar 

  38. Landthaler M, Rück A, Szeimies RM (1993) Photodynamische Therapie von Tumoren der Haut. Hautarzt 4469-74

    Google Scholar 

  39. Lim HW, Behar S, He D (1994) Effect of porphyrin and irradiation on heme biosynthetic pathway in endothelial cells. Photodermatol Photoimmunol Photomed 10: 17–21

    Google Scholar 

  40. Lipson RL, Baldes EJ, Olsen AM (1961) The use of a derivate of hematoporphyrin in tumor detection. J Natl Cancer Inst 26: 1–4

    PubMed  CAS  Google Scholar 

  41. Loh CS, Vernon D, MacRobert AJ, Bedwell J, Bown SG, Brown SB (1992) Endogenous porphyrin distribution induced by 5-aminolaevulinic acid and in the tissue layers of the gastrointestinal tract. J Photochem Photobiol B Biol 20:47–54

    Google Scholar 

  42. Lucchina LC, Kollias N, Gillies R, Phillips SB, Muccini JA, Stiller MJ, Tranick RJ, Drake LA (1996) Fluorescence photography in the evaluation of acne. J Am Acad Dermatol 3558–63

    Google Scholar 

  43. Malik Z, Lugaci H (1987) Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins. Br J Cancer 56589–595

    Google Scholar 

  44. Moan J, Bech 0, Gaullier JM, Stokke T, Stehen HB, Ma LW, Berg K (1998) Protoporphyrin IX accumulation in cells treated with 5-aminolevulinic acid: dependence on cell density, cell size and cell cycle. Int J Cancer 75134–139

    Google Scholar 

  45. Navone NM, Frisardi AL, Resnick ER, Del C Battle AM, Polo CF (1988) Porphyrin biosynthesis in human breast cancer. Preliminary mimetic in vitro studies. Med Sci Res 16: 61–62

    Google Scholar 

  46. Peng Q, Moan J, Warloe T, Rimington C (1992) Distribution and photosensitizing efficiency of porphyrins induced by application of exogenous 5-aminolevulinic in mice bearing mammary carcinoma. Int J Cancer 52433–443

    Google Scholar 

  47. Peng Q, Warloe T, Moan J, Heyerdahl H, Steen HB, Nesland JM, Giercksky KE (1995) Distribution of 5-aminolevulinic acid-induced porphyrins in noduloulcerative basal cell carcinoma. Photochem Photobiol 62: 906–913

    Article  PubMed  CAS  Google Scholar 

  48. Pimstone NR (1985) Utility of porphyrins and light in the diagnosis and treatment of malignancy (editorial). Hepatology 5338–34o

    Google Scholar 

  49. Policard A (1924) Etude sur les aspects offerts par des tumeurs expérimentales examinées à la lumière de Wood. Cr Soc Biol 91: 1423–1424

    Google Scholar 

  50. Raab O (1900) Über die Wirkung fluorescirender Stoffe auf Infusoriera. Z Biol 39:524

    Google Scholar 

  51. Rassmusen-Taxdal DS, Ward GE, Figge FHJ (1955) Fluorescence of human lymphatic and cancer tissues following high doses of hematoporphyrin. Cancer 8: 78

    Google Scholar 

  52. Regula J, MacRobert AJ, Gorchein A, Buonaccorsi GA, Thorpe SM, Spencer GM, Hatfield ARW, Bown SG (1995) Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumours using 5-aminolevulinic acid-induced protoporphyrin IX–a pilot study. Gut 36: 67–75

    Google Scholar 

  53. Sassa S, Zalar L, Poh-Fitzpatrick MB, Kappas A (1979) Sudies in porphyria IX: detection of the gene defect of erythropoietic protoporphyria in mitogen-stimulated human erythrocytes. Trans Assoc Am Phys 92: 268–272

    PubMed  CAS  Google Scholar 

  54. Steinbach P, Kriegmair M, Baumgartner R, Hofstädter F, Knöchel R (1994) Intravesical instillation of 5-aminolevulinic acid: the fluorescent metabolite is limited to urothelial cells. Urology 44: 676–681

    Google Scholar 

  55. Stout AL, Becker FF (1986) Henne enzyme patterns in genetically and chemically induced mouse liver tumors. Cancer Res 46:2756 2759

    Google Scholar 

  56. Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz C, Goetz AE, Kiefmann R, Reulen HJ (1998) Intraoperative detection of malignant gliomas by 5aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42: 518–526

    Article  PubMed  CAS  Google Scholar 

  57. Szeimies RM, Abels C, Fritsch C, Karrer S, Steinbach P, Bäumler W, Goerz G, Goetz AE, Landthaler M (1995) Wavelength dependency of photodynamic effects after sensitization with 5-aminolevulinic acid in vitro and in vivo. J Invest Dermatol 105: 672–677

    Google Scholar 

  58. Szeimies RM, Sassay T, Landthaler M (1994) Penetration potency of topical applied delta aminolevulinic acid for photodynamic therapy of basal cell carcinoma. Photochem Photobiol 59: 73–76

    Google Scholar 

  59. Tschudy DP, Collins A (1957) Reduction of 6-aminolevulinic acid dehydratase activity in the livers of tumor-bearing animals. Cancer Res 17: 976–980

    PubMed  CAS  Google Scholar 

  60. von Tappeiner H, Jesionek A (1903) Therapeutische Versuche mit fluoreszierenden Stoffen. MMW 50: 2042–2044

    Google Scholar 

  61. von Tappeiner H, Jodlbauer A (1904) Ueber die Wirkung der photodynamischen (fluorescierenden) Stoffe auf Protozoen und Enzyme. Arch Klin Med 80:427–487

    Google Scholar 

  62. Whitaker M (1994) Fluorescence imaging in living cells. In: Cells JE (ed) Cell biology. A laboratory handbook, vol 2. Academic, San Diego, pp 37-43

    Google Scholar 

  63. Wolf P, Rieger E, Kerl H (1993) Topical photodynamic therapy with endogenous porphyrins after application of 5-aminolevulinic acid: an alternative treatment modality for solar keratoses, superficial squamous cell carcinomas, and basal cell carcinomas? J Am Acad Dermatol 28: 17–21

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fritsch, C., Lang, K., Schulte, KW., Neuse, W.H.G., Ruzicka, T., Lehmann, P. (2001). Fluorescence Diagnosis with δ-Aminolevulinic Acid-Induced Porphyrins in Dermatology. In: Krutmann, J., Hönigsmann, H., Elmets, C.A., Bergstresser, P.R. (eds) Dermatological Phototherapy and Photodiagnostic Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04511-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04511-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04513-8

  • Online ISBN: 978-3-662-04511-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics