Skip to main content

Abstract

This chapter is concerned with the electrochemistry of oxidic glass-forming melts, and it may be mentioned at the outset that, in a strict sense, the term glass-forming melts is a more accurate name for this class of materials than just glass melts, at least with regard to glass production, because they are produced to become, but have never before been, glasses. Because, however, both terms are frequently used also for glasses that have been remelted, for instance in laboratories, melts treated in this chapter will not only be called glass-forming melts but will occasionally be termed glass melts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F.G.K. Baucke, R.-D. Werner: “Mixed alkali effect of electrical conductivity in glass-forming silicate melts”, Glastechn. Ber. 62, 182–186 (1989)

    Google Scholar 

  2. R.A. Robinson, R.H. Stokes: Electrolyte Solutions, 2nd ed. ( Butterworths, London 1968 ) p. 462

    Google Scholar 

  3. J. Kieffer, G. Borchardt: “Kinetic model of silicate melts — equilibrium case”, Glastechn. Ber. 62, 337–344 (1989)

    Google Scholar 

  4. F.G.K. Baucke: “High-temperature sensors for oxidic glass-forming melts”, In: Sensors. A Comprehensive Survey, Chemical and Biochemical Sensors, Vol. 3, ed. by W. Göpel et al. ( VCH, Weinheim 1992 ) pp. 1155–1180

    Google Scholar 

  5. B. Douglas, D. McDaniel, J. Alexander: Concepts and Models of Inorganic Chemistry, 3rd ed. ( Wiley, New York 1993 ) Chap. 7

    Google Scholar 

  6. J.E. Huheey, E.A. Keiter, R.L. Keiter: Inorganic Chemistry, 4th ed. ( Harper Collins, New York 1993 ) Chap. 9

    Google Scholar 

  7. I.S. Butler, J.F. Harrod: Inorganic Chemistry (Cummings, Redwood City 1989) Chap. 20

    Google Scholar 

  8. T. Moeller: Inorganic Chemistry (Wiley, New York 1952) Chap. 9

    Google Scholar 

  9. L.P. Hammett: Physical Organic Chemistry, 2nd ed. ( McGraw-Hill, New York 1970 ) pp. 267–272

    Google Scholar 

  10. H. Lux: “ ‘Säuren’ and ‘Basen’ im Schmelzfluß: Die Bestimmung der Sauerstoffionen-Konzentration”, Z. Elektrochem. 45, 303–309 (1939)

    Google Scholar 

  11. H. Flood, T. Förland: “The acidic and basic properties of oxides”, Acta Chem. Scand. 1, 592–604 (1947)

    Article  Google Scholar 

  12. E.A. Guggenheim: “The conceptions of electrical potential difference between two phases and the individual activities of ions”, J. Phys. Chem. 33, 842–849 (1929)

    Article  Google Scholar 

  13. K.H. Sun: “A scale of acidity and basicity in glass”, Glass Ind. 29, 73–74 (1948)

    Google Scholar 

  14. R.A. Cameron: “Kinetics of arsenic-antimony fining”, in 67th Ann. Meeting (Am. Ceram. Soc., Philadelphia 1965 )

    Google Scholar 

  15. S. Holmquist: “Oxygen ion activity and the solubility of sulfur trioxide in sodium silicate melts”, J. Am. Ceram. Soc. 49, 467–473 (1966)

    Article  Google Scholar 

  16. S. Holmquist: “Sodium oxide activities in molten sodium sulfate and sodium silicates”, Phys. Chem. Glasses 9, 32–34 (1968)

    Google Scholar 

  17. H. Franz, H. Scholze: “Die Löslichkeit von H2O-Dampf in Glasschmelzen verschiedener Basizität”, Glastechn. Ber. 36, 347–356 (1963)

    Google Scholar 

  18. M.L. Pearce: “Solubility of carbon dioxide and variation of oxygen ion activity in soda-silica melts”, J. Am. Ceram. Soc. 47, 342–347 (1964)

    Article  Google Scholar 

  19. M.L. Pearce: “Solubility of carbon dioxide and variation of oxygen ion activity in sodium borate melts”, J. Am. Ceram. Soc. 48, 175–178 (1965)

    Article  Google Scholar 

  20. H. Franz: “Oxygen ion activity and reaction equilibria in glass melts”, J. Can. Ceram. Soc. 38, 89–93 (1969)

    Google Scholar 

  21. F.W. Krämer: “Contribution to basicity of technical glass melts in relation to redox equilibria and gas solubilities”, Glastechn. Ber. 64, 71–80 (1991)

    Google Scholar 

  22. C. Bodsworth, H.B. Bell: Physical Chemistry of Iron and Steel Manufacture, 2nd ed. ( Longman, Harlow, Essex, England 1972 ) pp. 177–445

    Google Scholar 

  23. A. Paul: “Acid-base concepts in relation to the structure of borate and silicate glasses”, Trans. Indian. Ceram. Soc. 28, 63–81 (1969)

    Google Scholar 

  24. J.A. Duffy, M.D. Ingram: “Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts and glasses”, J. Am. Chem. Soc. 93, 6448–6454 (1971)

    Article  Google Scholar 

  25. J.A. Duffy, M.D. Ingram: “An interpretation of glass chemistry in terms of the optical basicity concept”, J. Non-Cryst. Solids 21, 373–410 (1976)

    Article  ADS  Google Scholar 

  26. J.A. Duffy: Bonding, Energy Levels and Bands in Inorganic Solids (Longman, Harlow, Essex, England 1990) Chaps. 6–8

    Google Scholar 

  27. J.A. Duffy: “A review of optical basicity and its applications to oxidic systems”, Geochim. Cosmochim. Acta 57, 3961–3970 (1993)

    Article  ADS  Google Scholar 

  28. W.W. Porterfield: Inorganic Chemistry - A Unified Approach (Addison-Wesley, Reading, MA 1984) Chap. 6

    Google Scholar 

  29. C.K. Jorgensen: Orbitals in Atoms and Molecules (Academic Press, New York 1962) Chap. 4

    Google Scholar 

  30. J.A. Duffy, M.D. Ingrain: “A new correlation between s-p spectra and the nephelauxetic ratio: applications in molten salt and glass chemistry”, J. Chem. Phys. 54, 443–444 (1971)

    Article  ADS  Google Scholar 

  31. J.A. Duffy, E.I. Kamitsos, G.D. Chryssikos, A.P. Patsis: “Trends in local optical basicity in sodium borate glasses and relation to ionic mobility”, Phys. Chem. Glasses 34, 153–157 (1993)

    Google Scholar 

  32. J.H. Binks, J.A. Duffy: “A molecular orbital treatment of basicity of oxyanion units”, J. Non-Cryst. Solids 37, 387–400 (1980)

    Article  ADS  Google Scholar 

  33. A. Dietzel: “Glasstruktur and Glaseigenschaften”, Glastechn. Ber. 22, 41–50, (1948–49)

    Google Scholar 

  34. W.A Weyl, E.G. Marboe: The Constitution of Glasses ( Interscience, New York 1962 )

    Google Scholar 

  35. K. Fajans, G. Joos: “Molrefraktion von Ionen and Molekülen im Lichte der Atomstruktur”, Z. Physik 23, 1–46 (1924)

    Article  ADS  Google Scholar 

  36. P. Baltá, C. Spurcaciu: “Some new ideas concerning the basicity of glasses”, 9-IBAUSIL, Weimar 1985. Sektion 4, pp. 21–26

    Google Scholar 

  37. P. Balta: “The basicity of glasses”, In: Proc. Fifth ESG Conf. on Glass Science and Technology for the 21st Century, Prague, 1999 (Czech Glass Soc., Prague 1999) B 3, pp. 125–130

    Google Scholar 

  38. J.R. Tessman, A.H. Kahn, W. Shockley: “Electronic polarizabilities of ions in crystals”, Phys. Rev. 92, 890–895

    Google Scholar 

  39. J.A. Duffy: “Optical basicity and glass chemistry”, In: Fundamentals of the Glass Manufacturing Process 1991, Proc. First Conf. of the European Society of Glass Science and Technology, Sheffield (Society of Glass Technology, Sheffield 1991 ) pp. 42–44

    Google Scholar 

  40. A. Klonkowski: “Changes of optical basicity in the glass system M(II)-P2O5” Phys. Chem. Glasses 22, 163–167 (1981)

    Google Scholar 

  41. N. Iwamoto, Y. Makino, S. Kasahara: “Correlation between refraction basicity and theoretical optical basicity”, J. Non-Cryst. Solids 68, 379–388 (1984)

    Article  ADS  Google Scholar 

  42. F.G.K. Baucke, J.A. Duffy: “Use of thallium(I) probe for identifying sites of mobile cations in glass during electrolysis”, J. Chem. Soc. Faraday Trans. 179, 661–667 (1983)

    Google Scholar 

  43. J.A. Duffy, E.I. Kamitsos, G.D. Chryssikos: “Chemical bonding analysis of alkali oxidic glass systems: charges on metal ions and network sites”, Phys. Chem. Glasses 36, 53–58 (1995)

    Google Scholar 

  44. M.D. Ingram: “Optical basicities and structural dynamics in glassy materials”, J. Non-Cryst. Solids 222, 42–49 (1997)

    ADS  Google Scholar 

  45. A. Matthai, D. Ehrt, C. Rüssel: “Redox behaviour of polyvalent ions in phosphate glass melts and phosphate glasses”, Glastechn. Ber. 71, 187–192 (1998)

    Google Scholar 

  46. O. Claussen, C. Rüssel: “Voltammetric study of the thermodynamics of the Fe3+/Fe2+ equilibrium and the self diffusivity of iron in glasses with the basic composition 74SiO2·(26-x)Na2xCaO”, Phys. Chem. Glasses 39, 200–205 (1998)

    Google Scholar 

  47. H.A. Schaeffer: “Scientific and technological challenges of industrial glass melting”, Solid State Ionics 105, 265–270 (1998)

    Article  Google Scholar 

  48. H.D. Schreiber, L.J. Peters, J.W. Beckman, C.W. Schreiber: “Redox chemistry of iron-manganese and iron-chromium interactions in soda lime silicate glass melts”, Glastechn. Ber. 69, 269–277 (1996)

    Google Scholar 

  49. R. Bruckner, H. Hessenkemper: “Influence of water content and basicity on redox ratio — Consequences on radiation heat absorption and emission of glass melts during fusion and procession”, Glastechn. Ber. 66, 245–253 (1993)

    Google Scholar 

  50. H. Müller-Simon: “On the interaction between oxygen, iron and sulfur in industrial glass melts”, Glastechn. Ber. 67, 297–303 (1994)

    Google Scholar 

  51. K.H. Karlsson: Chemistry of Glass Forming Silicate Melts ( Abo Akademi University Press, Turku, Finland 1995 ) pp. 1–45

    Google Scholar 

  52. K. Takahashi, Y. Miura: “Electrochemical behaviour of glass melts”, J. Non Cryst. Solids 96, 119–130 (1987)

    Article  ADS  Google Scholar 

  53. R.J. Araujo, N.F. Borrelli: SPIE Submolecular Glass Chem. Phys. 1590, 138 (1991)

    Google Scholar 

  54. M. Cable, Z.D. Xiang: “The optical spectra of copper ions in alkali-lime-silica glasses”, Phys. Chem. Glasses 33, 154–160 (1992)

    Google Scholar 

  55. C. Rüssel, E. Freude: “Voltammetric studies of the redox behaviour of various multivalent ions in soda-lime-silica glass melts”, Phys. Chem. Glasses 30, 6268 (1989)

    Google Scholar 

  56. R. Pyare, P. Nath: “Stannous-stannic equilibrium in molten binary alkali silicate and ternary silicate glasses”, J. Am. Ceram. Soc. 65, 549–554 (1982)

    Article  Google Scholar 

  57. R. Pyare, S.P. Singh, A. Singh, P. Nath: “The As3+-As5+ equilibrium in borate and silicate glasses”, Phys. Chem. Glasses 23, 158–168 (1982)

    Google Scholar 

  58. A. Paul, R.W. Douglas: “Cr3+-Cr6+ equilibrium in binary alkali silicate glasses”, Phys. Chem. Glasses 6, 197–202 (1965)

    Google Scholar 

  59. A. Paul, R.W. Douglas: “Ferrous-ferric equilibrium in binary alkali silicate glasses”, Phys. Chem. Glasses 6, 207–211 (1965)

    Google Scholar 

  60. A. Paul, R.W. Douglas: “Cerous-ceric equilibrium in binary alkali silicate glasses”, Phys. Chem. Glasses 6, 212–215 (1965)

    Google Scholar 

  61. A. Paul, R.W. Douglas: “Mutual interaction of different redox pairs in glass”, Phys. Chem. Glasses 7, 1–13 (1966)

    Google Scholar 

  62. J.A. Duffy, M.D. Ingram, I.D. Sommerville: “Acid-base properties of molten oxides and metallurgical slags”, J. Chem. Soc. Faraday Trans. 74, 1410–1419 (1978)

    Article  Google Scholar 

  63. D.R. Gaskell: “On the correlation between the distribution of phosphorus between slag and metal and the theoretical optical basicity of the slag”, Trans. Iron Steel Inst. Jpn. 22, 997–1000 (1982)

    Article  Google Scholar 

  64. D.R. Gaskell: “Optical basicity and the thermodynamic properties of slags”, Met. Trans. 20, 113–118 (1989)

    Article  Google Scholar 

  65. T. Mori: “On the phosphorus distribution between slag and metal”, Bull. Jpn. Inst. Metals 23, 354–361 (1984)

    Article  Google Scholar 

  66. D.J. Sosinsky, I.D. Sommerville: “The composition and temperature dependence of the sulfide capacity of metallurgical slags”, Met. Trans. 17B, 331337 (1985)

    Google Scholar 

  67. S. Sumita, Y. Matsumoto, K. Morinaga, T. Yanagase: “The optical basicity and Fee+—Fe3+ redox in oxyacid salt systems”, Trans. Jpn. Inst. Metals 23, 360–367 (1982)

    Google Scholar 

  68. N.N: 3rd Int. Conf. Molten Slags and Fluxes,Glasgow, 1988 (The Institute of Metals, London 1989) pp. 29, 60, 86, 91–94, 107, 146–149, 150–153, 154–156, 157–162, 166–168, 241–245,277–282, 313–316

    Google Scholar 

  69. R.W. Young, J.A. Duffy, G.J. Hassall, Z.Xu: “Use of optical basicity concept for determining phosphorus and sulfur slag-metal partitions”, Ironmaking and Steelmaking 19, 201–219 (1992)

    Google Scholar 

  70. F. Mitchell, D.H. Sleeman, J.A. Duffy, M.D. Ingram, R.W. Young: “Optical basicity of metallurgical slags: a new computer based system for data visualisation and analysis”, Ironmaking and Steelmaking 24, 306–320 (1997)

    Google Scholar 

  71. L. Pauling: “The modern theory of valency”, J. Chem. Soc. 19, 1461–1467 (1948)

    Article  Google Scholar 

  72. C.K. Jorgensen: Oxidation Numbers and Oxidation States (Springer, Berlin, Heidelberg 1969) Chap. 5

    Google Scholar 

  73. G. Jeddeloh: “The redox equilibrium in silicate melts”, Phys. Chem. Glasses 25, 163–164 (1984)

    Google Scholar 

  74. F.G.K. Baucke, J.A. Duffy: “The effect of basicity on redox equilibria in molten glasses”, Phys. Chem. Glasses 32, 211–218 (1991)

    Google Scholar 

  75. J.A. Duffy, M.D. Ingram: “Optical basicity. Part V: A correlation between the Lewis (optical) basicity of oxyanions and the strengths of Bronsted acids in aqueous solution”, J. Inorg. Nucl. Chem. 38, 1831–1833 (1976)

    Article  Google Scholar 

  76. F.G.K. Baucke, J.A. Duffy: “Oxidation states of metal ions in glass melts”, Phys. Chem. Glasses 35, 17–21 (1994)

    Google Scholar 

  77. J.A. Duffy, F.G.K. Baucke: “Corrosion of metals in molten silicates: Relationship with electrode potentials in aqueous solution”, J. Phys. Chem. 99, 9189–9193 (1995)

    Article  Google Scholar 

  78. J.A. Duffy, F.G.K. Baucke: “Effect of basicity on reduction of metal ions to the metallic state in glass melts”, Phys. Chem. Glasses 38, 25–26 (1997)

    Google Scholar 

  79. J.A. Duffy: “Effect of glass basicity on the ultraviolet spectra of thalliurn(I) and thallium(III)”, Phys. Chem. Glasses 32, 55–57 (1991)

    Google Scholar 

  80. J.A. Blair, J.A. Duffy: “Effect of temperature on redox equilibria in phosphate glasses and melts”, Phys. Chem. Glasses 36, 73–76 (1995)

    Google Scholar 

  81. F.G.K. Baucke, J.A. Duffy: “Redox reactions between cations of different polyvalent elements in glass melts: an optical basicity study”, Phys. Chem. Glasses 34, 158–163 (1993)

    Google Scholar 

  82. R.C. Weast (Ed.): Handbook of Chemistry and Physics,55th ed. (CRC, Cleveland, OH 1974–75)

    Google Scholar 

  83. J.H. Campbell, E.P. Wallterstein, J.S. Hayden, D.L. Sapak, D. Warrington, A.J. Marker, H. Toratani, H. Meissner, S. Nakajima, T. Izumitani: “Elimination of platinum inclusions in phosphate laser glasses”, LLNL Report UCRL 53932 ( Lawrence Livermore National Laboratory, Livermore, CA 1989 )

    Google Scholar 

  84. G. Gliemeroth, U. Eichhorn, E. Hölzel: “Zur Beeinflussung der Eigenschaften silberhalogenidhaltiger fototroper Gläser”, Glastechn. Ber. 54, 162–174 (1981)

    Google Scholar 

  85. J.S. Strout: “Optical absorption and color caused by selected cations in high-density, lead silicate glass”, J. Am. Ceram. Soc. 54, 401–406 (1971)

    Article  Google Scholar 

  86. C.R. Bamford: “Colour generation and control in glass”, In: Glass Science and Technology, Vol. 2, ed. by D.R. Uhlman, N.J. Kreidl ( Elsevier, Amsterdam 1977 ) pp. 35–38

    Google Scholar 

  87. M. Cable: “Principles of glass melting”, In: Glass Science and Technology, Vol. 2, ed. by D.R. Uhlman, N.J. Kreidl ( Academic Press, Orlando, 1984 ) pp. 1–44

    Google Scholar 

  88. B. Stahlberg: Bestimmung thermodynamischer Größen des Sb 3+/Sb 5+ Gleichgewichts in Silikatglas-Schmelzen unter Verwendung der MößbauerSpektroskopie and elektro-chemischer Messungen, PhD Thesis (Münster 1987 )

    Google Scholar 

  89. B. Stahlberg, B.D. Mosel, W. Müller-Warmuth, F.G.K. Baucke: “Combined electrochemical and Mössbauer studies of the Sb3+/Sb5+ equilibrium in a silicate glass-forming melt”, Glastechn. Ber. 61, 335–340 (1988)

    Google Scholar 

  90. E. Freude, C. Rüssel: “Voltammetric methods for determining polyvalent ions in glass melts”, Glastechn. Ber. 60, 202–204 (1987)

    Google Scholar 

  91. C. Montel, C. Rüssel, E. Freude: “Square-wave-voltammetry as a method for the quantitative in-situ determination of polyvalent elements in molten glass”, Glastechn. Ber. 61, 59–63 (1988)

    Google Scholar 

  92. C. Rüssel: “Polyvalent ions in glass melts”, Glastechn. Ber. 63, 197–201 (1990)

    Google Scholar 

  93. A.W.M. Wondergrem-de Best: Redox Behaviour and Fining of Molten Glass, PhD Thesis (Eindhoven 1994 )

    Google Scholar 

  94. T. Pfeiffer: “Square wave voltammetry”, Parts 1 and 2, Labornotiz (Schott Glas, Mainz 1994 )

    Google Scholar 

  95. M. Zink, C. Rüssel, H. Müller-Simon, K.W. Mergler: “Voltammetric sensor for glass tanks”, Glastechn. Ber. 65, 25–31 (1992)

    Google Scholar 

  96. K. Kiukkola, C. Wagner: “Galvanic cells for the determination of the standard molar free energy of formation of metal halides, oxides, and sulfides at elevated temperatures”, J. Electrochem. Soc. 104, 308–316 (1957)

    Article  Google Scholar 

  97. K. Kiukkola, C. Wagner: “Measurements on galvanic cells involving solid electrolytes”, J. Electrochem. Soc. 104, 379–387 (1957)

    Article  Google Scholar 

  98. J. Besson, C. Deportes, M. Darcy: “Sur un electrode de comparaison utilisable en bains de sels oxygenes a haute temperature”, Compt. Rend. Acad. Sci. 251, 1630–1632 (1960)

    Google Scholar 

  99. E. Plumat, F. Toussaint, M. Boffe: “Formation of bubbles by electrochemical processes in glass”, J. Am. Ceram. Soc. 49, 551–558 (1966)

    Article  Google Scholar 

  100. W.A. Fischer, D. Janke: Metallurgische Elektrochemie (Springer, Berlin, Heidelberg 1975 )

    Google Scholar 

  101. V.S. Stubican, R.C. Hink, S.P. Ray: “Phase equilibria and ordering in the system ZrO2–Y2O3”, J. Am. Ceram. Soc. 61, 17–21 (1978)

    Article  Google Scholar 

  102. K.S. Goto: Solid State Electrochemistry and Its Applications to Sensors and Electronic Devices, Materials Science Monographs, Vol. 45 (Elsevier, Amsterdam 1988 ) pp. 283–288

    Google Scholar 

  103. F.G.K. Baucke: “Sauerstoffsensoren für Metall- und Glasschmelzen”, Dechema-Monographien, Vol. 126 ( VCH, Weinheim 1992 ) pp. 345–361

    Google Scholar 

  104. F.G.K. Baucke: “High-temperature oxygen sensors for glass-forming melts”, Fresenius’ J. Anal. Chem. 356, 209–214 (1996)

    Google Scholar 

  105. F.G.K. Baucke: “Development of electrochemical cells employing oxide ceramics for measuring oxygen partial pressures in laboratory and technical glass melts”, Glastechn. Ber. 56, 307–312 (1983)

    Google Scholar 

  106. Th. Frey, H.A. Schaeffer, F.G.K. Baucke: “Entwicklung einer Sonde zur Messung des Sauerstoffpartialdrucks in Glasschmelzen”, Glastechn. Ber. 53, 116–123 (1980)

    Google Scholar 

  107. H.A. Schaeffer, Th. Frey, I. Löh, F.G.K. Baucke: “Oxidation state of equilibrated and non-equilibrated glass melts”, J. Non-Cryst. Solids 49, 179–189 (1982)

    Article  ADS  Google Scholar 

  108. F.G.K. Baucke: “Electrochemical cells for on-line measurements of oxygen fugacities in glass-forming melts”, Glastechn. Ber. 61, 87–90 (1988)

    Google Scholar 

  109. F.G.K. Baucke, W. Frank, G. Röth: “Meßanordnung zur Messung von Sauerstoff-Partialdrücken”, German Patent P 30 28 270 (1986)

    Google Scholar 

  110. F.G.K. Baucke, Th. Frey, H.A.Schaeffer: “Meßsonde zur Bestimmung des Sauerstoffpartialdruckes in heißen Medien”, German Patent P 29 08 368 (1979)

    Google Scholar 

  111. F.G.K. Baucke, G. Röth: “Sonde zur Messung von Sauerstoffpartialdrücken in hochaggressiven Medien”, German Patent P 3109 454 (1987)

    Google Scholar 

  112. F.G.K. Baucke, G. Röth: “Sauerstoffsonde unter Verwendung eines nichtleitenden Keramikrohres”, German Patent GBM 85 13 976 (1985)

    Google Scholar 

  113. S.L. Fridman, S.F. Pal’guev, V.N. Chebotin: “Thermoelectromotive force in solid ZrO2 + Y2O3 electrolytes”, Ektrokhimiya 5, 357–358 (1969)

    Google Scholar 

  114. W. Fischer: “Die Thermokraft von kubisch stabilisiertem Zirkondioxid zwischen Sauerstoffelektroden”, Z. Naturforsch. 22, 1575–1581 (1967)

    ADS  Google Scholar 

  115. S. Pizzini, C. Riccardi, V. Wagner, C. Sinistri: “On the thermoelectric power of stabilized zirconia”, Z. Naturforsch. 25, 559–565 (1970)

    ADS  Google Scholar 

  116. J.A. Veith: Ermittlung von Standard-Seebeck-Koeffizienten von Yttrium-dotierten Zirkondioxid-Keramiken zwischen 700° C und 1500° C, Diploma Thesis ( FH Rheinland-Pfalz, Bingen 1983 )

    Google Scholar 

  117. F.G.K. Baucke, G. Röth, R.-D. Werner: “Meßvorrichtung zum Messen des Sauerstoffpartialdruckes in aggressiven Flüssigkeiten hoher Temperatur”, German Patent 38 11 865 (1989)

    Google Scholar 

  118. F.G.K. Baucke, G. Röth, R.-D. Werner: “Meßvorrichtung zum Messen des Sauerstoffpartialdruckes in aggressiven Flüssigkeiten hoher Temperatur”, German Patent 38 11 864 (1990)

    Google Scholar 

  119. F.G.K. Baucke, G. Röth, R.-D. Werner: “Meßvorrichtung zum Messen des Sauerstoffpartialdruckes in aggressiven Flüssigkeiten hoher Temperatur”, German Patent 38 11 915 (1990)

    Google Scholar 

  120. F.G.K. Baucke, G. Röth: “Referenzelektrodenanordnung einer Meßkette zur Messung des Sauerstoffpartialdrucks in aggressiven Medien von hoher Temperatur”, German Patent 41 38 409 (1993)

    Google Scholar 

  121. J.P. Coughlin: Contributions to the Data on Theoretical Metallurgy. XII. Heats and Free Energies of Formation of Inorganic Oxides, Bureau of Mines, Bulletin 542 ( US Government Printing Office, Washington, DC 1954 ) pp. 710

    Google Scholar 

  122. G.N. Lewis, M. Randall: Thermodynamics, 2nd ed., revised by K.S. Pitzer, L. Brewer (McGraw-Hill, New York 1961 ) p. 672

    Google Scholar 

  123. K.S. Goto: Solid State Electrochemistry and Its Applications to Sensors and Electronic Devices, Materials Science Monographs, Vol. 45 (Elsevier, Amsterdam 1988 ) pp. 231–265

    Google Scholar 

  124. D.J.G. Ives: “Oxide, oxygen, and sulfide electrodes”, in Reference Electrodes. Theory and Practice, ed. by D.J.G. Ives, G.J. Janz ( Academic Press, New York 1961 ) pp. 322–392

    Google Scholar 

  125. F.G.K. Baucke, Th. Pfeiffer, S. Biedenbender, G. Röth, R.-D. Werner: “Verwendung einer Metall/Metalloxid-Elektrode”, German Patent 4 324 922 (1995)

    Google Scholar 

  126. G.V. Samsonov: The Oxide Handbook, 2nd ed. ( IFI/Plenum, New York 1982 ) pp. 44–48

    Google Scholar 

  127. W.A. Fischer, D. Janke: Metallurgische Elektrochemie (Springer, Berlin, Heidelberg 1975) pp. 192 ff., 244 ff., 318 ff.

    Google Scholar 

  128. K.S. Goto: Solid State Electrochemistry and Its Applications to Sensors and Electronic Devices, Materials Science Monographs, Vol. 45 (Elsevier, Amsterdam 1988 ) pp. 299–332

    Google Scholar 

  129. L. Nemec, M. Muhlbauer: “Verhalten von Gasblasen in der Glasschmelze bei konstanter Temperatur”, Glastechn. Ber. 54, 99–108 (1981)

    Google Scholar 

  130. M. Cable: “Principles of glass melting”, In: Glass Science and Technology, Vol. 2. Processing, ed. by D.R. Uhlmann, N.J. Kreidl (Academic Press, Orlando, FL 1984) Chap. 1, pp. 16–28

    Google Scholar 

  131. F. Krämer: “Mathematisches Modell der Veränderung von Gasblasen in Glasschmelzen”, Glastechn. Ber. 52, 43–50 (1979)

    Google Scholar 

  132. L. Nemec: “The behaviour of bubbles in glass melts, Part 1. Bubble size controlled by diffusion”, Glass Technology 21, 134–138 (1980)

    MathSciNet  Google Scholar 

  133. L. Nemec: “The behaviour of bubbles in glass melts, Part 2. Bubble size controlled by diffusion and chemical reaction”, Glass Technology 21, 139–143 (1980)

    MathSciNet  Google Scholar 

  134. M.C. Weinberg, P.I.K. Onorato, D.R. Uhlmann: “Behavior of bubbles in glass melts. I. Dissolution of a stationary bubble containing a single gas”, J. Am. Ceram. Soc. 63, 175–180 (1980)

    Article  Google Scholar 

  135. M.C. Weinberg, P.I.K. Onorato, D.R. Uhlmann: “Behavior of bubbles in glass melts. II. Dissolution of a stationary bubble containing a diffusing and a nondiffusing gas”, J. Am. Ceram. Soc. 63, 435–438 (1980)

    Article  Google Scholar 

  136. P.I.C. Onorato, M.C. Weinberg, D.R. Uhlmann: “Behavior of bubbles in glass melts. III. Dissolution and growth of a rising bubble containing a single gas”, J. Am. Ceram. Soc. 64, 676–682 (1981)

    Article  Google Scholar 

  137. M.C. Weinberg, R.S. Subramanian: “Dissolution of multicomponent bubbles”, J. Am. Ceram. Soc. 63, 527–531 (1980)

    Article  Google Scholar 

  138. J.I. Ramos: “Behavior of multicomponent gas bubbles in glass melts”, J. Am. Ceram. Soc. 69, 49–54 (1986)

    Article  Google Scholar 

  139. M. Cable, J.R. Frade: “The diffusion-controlled dissolution of spheres”, J. Mater. Sci. 22, 1894–1900 (1987)

    Article  ADS  Google Scholar 

  140. M. Cable, J.R. Frade: “Theoretical analysis of the dissolution of multi-component gas bubbles”, Glastechn. Ber. 60, 355–362 (1987)

    Google Scholar 

  141. M.C. Weinberg: “Dissolution of a stationary bubble in a glass melt with a reversible chemical reaction: rapid forward reaction rate constant”, J. Am. Ceram. Soc. 65, 479–485 (1982)

    Article  Google Scholar 

  142. H. Hübenthal, G.H. Frischat: “Formation and behaviour of nitrogen bubbles in glass melts”, Glastechn. Ber. 60, 1–10 (1987)

    Google Scholar 

  143. R.G.C. Beerkens: “Chemical equilibrium reactions as driving forces for growth of gas bubbles during refining”, Glastechn. Ber. 63, 222–242 (1990)

    Google Scholar 

  144. H. Yoshikawa, Y. Kawase: “Significance of redox reactions in glass refining processes”, Glastechn. Ber. Glass Sci. Technol. 70, 31–40 (1997)

    Google Scholar 

  145. F. Krämer: “Gasprofilmessungen zur Bestimmung der Gasabgabe beim Glasschmelzprozeß”, Glastechn. Ber. 53, 177–188 (1980)

    Google Scholar 

  146. S. Takeshita et al.: “Refining of glasses under sub-atmospheric pressures III”, In: Proc. XVI International Congress on Glass, Madrid, 1992. Vol. 6 ( S.E. de Ceramica y Vidrio, Madrid 1992 ) pp. 173–178

    Google Scholar 

  147. V. Klein: “Die Entgasung von Glasschmelzen durch Schallwellen”, Glastechn. Ber. 16, 232–233 (1938)

    Google Scholar 

  148. F. Krüger: “Uber die Entgasung von Glasschmelzen durch Schallwellen”, Glastechn. Ber. 16, 233–236 (1938)

    Google Scholar 

  149. E.D. Spinosa, D.E. Ensminger: “Sonic energy as a means to reduce energy consumption during glass melting”, Ceram. Eng. Sci. Proc. 7, 410–425 (1986)

    Article  Google Scholar 

  150. A. Eller: “Force on a bubble in a standing acoustic wave”, J. Acoustic Soc. Am. 43, 170–171 (1968)

    Article  ADS  Google Scholar 

  151. C. Eden: “Ultraschall-Entgasung von Glasschmelzen im Hochfrequenzinduktionsofen”, Glastechn. Ber. 25, 83–86 (1952)

    Google Scholar 

  152. K. Högerl, G.H. Frischat: “Homogenization of glass melts by bubbling”, In: Proc. International Congress on Glass, Madrid, 1992. Vol. 6 ( S.E. de Ceramica y Vidrio, Madrid 1992 ) pp. 179–184

    Google Scholar 

  153. L. Nemec: “Refining in the glass melting”, J. Am. Ceram. Soc. 60, 436–440 (1977)

    Article  Google Scholar 

  154. H.D. Schreiber, S.J. Kozak, P.G. Leonhard, K.K. McManus: “Sulfur chemistry in a borosilicate melt, Part I: Redox equilibria and solubility”, Glastechn. Ber. 60, 389–398 (1987)

    Google Scholar 

  155. H. Müller-Simon: “Oxygen balance in sulfur-containing melts”, Glastechn. Ber. 71, 157–165 (1998)

    Google Scholar 

  156. S.M. Budd: Letter to the Editor, without title, Phys. Chem. Glasses 7, 210–213 (1966)

    Google Scholar 

  157. H.O. Mulfinger: “Gase (Blasen) in der Schmelze”, In: Glastechnische Fabrikationsfehler,ed. by H. Jebsen-Marwedel, R. Bruckner (Springer, Berlin, Heidelberg 1980) pp. 193 ff.

    Google Scholar 

  158. R.G.C. Beerkens, L. Zamann, P. Laimböck, S. Kobayashi: “Impact of furnace atmosphere and organic contamination of recycled cullet on redox state fining of glass melts”, Glastechn. Ber. Glass Sci. Technol. 72, 127–144 (1999)

    Google Scholar 

  159. K. Takahashi, Y. Miura: “Electrochemical studies on diffusion and redox behavior of various metal ions in some molten glasses”, J. Non-Cryst. Solids 39, 527–532 (1980)

    Article  Google Scholar 

  160. K. Takahashi, Y. Miura: “Electrochemical studies on redox behavior of metal- lic ions in molten oxide glasses”, Glastechn. Ber. 56, 928–933 (1983)

    Google Scholar 

  161. B. Strzelbicka, A. Bogacz: “Chronopotentiometric investigation of Pb(II)/Pt electrode processes in molten Na2Si2O5”, Electrochim. Acta 30, 865–870 (1985)

    Article  Google Scholar 

  162. G.C. Barker: “Square-wave voltammetry and some related techniques”, Anal. Chim. Acta 18, 118–131 (1958)

    Article  ADS  Google Scholar 

  163. L. Ramaley, M.S. Krause, Jr.: “Theory of square wave voltammetry”, Anal. Chem. 41, 1362–1365 (1969)

    Google Scholar 

  164. M.S. Krause, L. Ramaley: “Analytical application of square wave voltammetry”, Anal. Chem. 41, 1365–1369 (1969)

    Article  Google Scholar 

  165. J.G. Osteryoung, R.A. Osteryoung: “Square wave voltammetry”, Anal. Chem. 57, 101A - 110A (1985)

    Article  Google Scholar 

  166. J.G. Osteryoung, J.J. O’Dea: “Square wave voltammetry”, In: Electroanalytical Chemistry, Vol. 14, ed. by A.J. Bard ( Dekker, New York 1986 ) pp. 209–308

    Google Scholar 

  167. G. Bouquet, S. Dobos, Z. Boksay: “Untersuchung der Oberflächenschicht des Glases”, Ann. Univ. Sci. Budapest (Rolando Eötvös Nominatae), Sect. Chim. 6, 5–13 (1964)

    Google Scholar 

  168. H. Bach, F.G.K. Baucke: “Measurement of ion concentration profiles in surface layers of leached (‘swollen’) glass electrode membranes by means of luminescence excited by ion sputtering”, Electrochim. Acta 16, 1311–1319 (1971)

    Article  Google Scholar 

  169. T. Hayashi, W.G. Dorfeld: “Electrochemical study of As3+/As5+ equilibrium in a barium borosilicate melt”, J. Non-Cryst. Solids 177, 331–339 (1994)

    Article  ADS  Google Scholar 

  170. R. Akiyama, A. Takenaka, M. Sugazaki: “Determination of antimonic(III) and antimonic(V) in glasses by ion chromatography/inductively coupled plasma atomic emission spectroscopy”, Rep. Res. Lab. Asahi Glass 44, 13–18 (1994)

    Google Scholar 

  171. H.D. Schreiber: “An electrochemical series of redox couples in silicate melts: A review and applications to geochemistry”, J. Geophys. Res. 92, 9223–9232 (1987)

    Google Scholar 

  172. H.D. Schreiber: “Redox chemistry in glass-forming melts.–Electron exchanges”, Glass Res. Bull. Glass Sci. Eng. 3, 6–7 (1983)

    Google Scholar 

  173. H.D. Schreiber, B.K. Kochanowski, C.W. Schreiber, A.B. Morgan, M.T. Coolbaugh, T.G. Dunlap: “Compositional dependence of redox equilibria in sodium silicate glasses”, J. Non-Cryst. Solids 177, 340–346 (1994)

    Article  ADS  Google Scholar 

  174. H.D. Schreiber, R.W. Fowler, C.C. Ward: “Sulphate as a selective redox buffer for borosilicate melts”, Phys. Chem. Glasses 34, 66–70 (1993)

    Google Scholar 

  175. A. Kumar, S.P. Singh: “Oxygen ion activity and its influence on redox equilibria in a ternary soda-lime-silica glass system”, Glastechn. Ber. 65, 69–72 (1992)

    Google Scholar 

  176. L. Ortmann, D. Höhne, G. Nölle: “Equilibrium constant-determination and influence on redox reactions in soda-lime-silica glass melts”, Glastechn. Ber. 69, 235–241 (1996)

    Google Scholar 

  177. R.L. Mössbauer: “Kernresonanzfluoreszenz von Gammastrahlung in Ir191” Z. Phys. 151, 124–143 (1958)

    Article  ADS  Google Scholar 

  178. H. Frauenfelder: The Mössbauer Effect ( Benjamin, New York 1963 )

    Google Scholar 

  179. G.K. Wertheim: Mössbauer Effect: Principles and Applications ( Academic Press, New York 1964 )

    MATH  Google Scholar 

  180. H. Wegener: Der Mößbauer Effekt ( Bibliographisches Institut, Mannheim 1965 )

    Google Scholar 

  181. V.I. Goldanskii: “Zur Gamma-Resonanzspektroskopie (Mössbauerspektroskopie) in der Chemie”, Angew. Chem. 79, 844–858 (1967)

    Article  Google Scholar 

  182. V.I. Goldanskii, R.H. Herber: Chemical Application of Mössbauer Spectroscopy ( Academic Press, New York 1968 )

    Google Scholar 

  183. P. Gütlich: “Physikalische Methoden in der Chemie: Mößbauer-Spektroskopie I”, Chemie in unserer Zeit 4, 133–144 (1970)

    Article  Google Scholar 

  184. P. Gütlich: “Physikalische Methoden in der Chemie: Mößbauer-Spektroskopie II”, Chemie in unserer Zeit 5, 131–141 (1971)

    Article  Google Scholar 

  185. R.L. Mößbauer: “Gammastrahlen-Resonanzspektroskopie und chemische Bindung”, Angew. Chem. 83, 524–534 (1971)

    Article  Google Scholar 

  186. N.N. Greenwood, T.C. Gibb: Mössbauer Spectroscopy ( Chapman and Hall, London 1971 )

    Book  Google Scholar 

  187. T.C. Gibb: Principles of Mössbauer Spectroscopy ( Chapman and Hall, London 1976 )

    Google Scholar 

  188. G.K. Shenoy, F.E. Wagner: Mössbauer Isomer Shifts (North Holland, Amsterdam 1978 )

    Google Scholar 

  189. D. Barb: Grundlagen und Anwendungen der Mössbauer-Spektroskopie (Ed. Acad. Rep. Soc. Romania, Bucharest 1980 )

    Google Scholar 

  190. W. Müller-Warmuth, H. Eckert: “Nuclear magnetic resonance and Mössbauer Spectroscopy of Glasses”, Physics Reports (Rev. Sect. of Phys. Lett.) 88, 91–149 (1982)

    Google Scholar 

  191. H. Cremers, B.D. Mosel, W. Müller-Warmuth, G.H. Frischat, V. Braetsch: 121 Sb Mössbauer studies of glasses in the system Ge-Sb-Se, Phys. Chem. Glasses 30, 79–82 (1989)

    Google Scholar 

  192. H.O. Mulfinger, A. Dietzel, O. v. d. Rhön, J.M.F. Navarro: “Physikalische Löslichkeit von Helium, Neon und Stickstoff in Glasschmelzen”, Glastechn. Ber. 45, 389–396 (1972)

    Google Scholar 

  193. A.W.M. Wondergem-de Best: Redox Behaviour and Fining of Molten Glass, PhD Thesis (Eindhoven 1994 ) p. 266

    Google Scholar 

  194. M. Nakashima, H Yamashita, T. Maekawa: “Electrochemical study of Fe ions in alkali borate melts”, J. Non-Cryst. Solids 223, 133–140 (1998)

    Article  ADS  Google Scholar 

  195. B. LaFage, P. Taxil: “Titration of molten soda lime silicate glasses by square wave voltammetry”, J. Electrochem. Soc. 140, 3089–3093 (1993)

    Article  Google Scholar 

  196. K. Takahashi, Y. Miura: “Application of chronopotentiometry to electrode reaction of metal ions in molten sodium borate”, J. Ceram. Soc. Jpn. 87, 95–104 (1979)

    Google Scholar 

  197. K. Takahashi, Y. Miura: “Chronopotentiometric analysis of various electrode reactions of metal ions in molten sodium borate”, J. Ceram. Soc. Jpn. 87, 189–197 (1979)

    Google Scholar 

  198. T. Berzins, P. Delahay: “Oscillographic polarographic waves for the reversible deposition of metals on solid electrodes”, J. Am. Chem. Soc. 75, 555–559 (1953)

    Article  Google Scholar 

  199. H. Matsuda, Y. Ayabe: “Zur Theorie der Randles-Sevcikschen Kathodenstrahl-Polarographie”, Z. Elektrochem. 59, 494–503 (1955)

    Google Scholar 

  200. A. Sasahira, T. Yokogawa: “Ce4+/Ce3+ redox equilibrium in Na2O-B2O3 melts by linear sweep voltammetry”, Electrochim. Acta 29, 533–540 (1984)

    Article  Google Scholar 

  201. A. Sasahira, T. Yokogawa: “Fe3+/Fe2+ redox equilibrium in the molten Nc2O-B2O3 system by linear sweep voltammetry”, Electrochim. Acta 30, 441–448 (1985)

    Article  Google Scholar 

  202. A. Lenhart, H.A. Schaeffer: “The determination of oxidation state and redox behavior of glass melts using electrochemical sensors”, In XIV. Int. Congr. on Glass, Vol. 1 ( Indian Ceram. Soc., New Delhi 1986 ) pp. 147–154

    Google Scholar 

  203. K. Takahashi, Y. Miura: “Electrochemical studies on ionic behavior in molten glasses”, J. Non-Cryst. Solids 80, 11–19 (1986)

    Article  ADS  Google Scholar 

  204. J.-Y. Tilquin, P. Duveiller, J. Glibert, P. Claes: “High-temperature study of multivalent elements in glass-forming melts: the particular case of iron”, Ber. Bunsenges. Phys. Chem. 100, 1489–1492 (1996)

    Article  Google Scholar 

  205. J.-Y. Tilquin, P. Duveiller, J. Glibert, P. Claes: “Effect of basicity on redox equilibria in soda silicate melts: An in situ electrochemical investigation”, J. Non-Cryst. Solids 211, 95–104 (1997)

    Article  ADS  Google Scholar 

  206. J.-Y. Tilquin, P. Duveiller, J. Glibert, P. Claes: “Electrochemical behaviour of sulfate in sodium silicates at 1000 °C”, Electrochim. Acta 42, 2339–2346 (1997)

    Article  Google Scholar 

  207. O. Claußen, C. Rüssel: “Diffusivities of polyvalent elements in glass melts”, Solid State Ionics 105, 289–296 (1998)

    Article  Google Scholar 

  208. C. Rüssel, G. Sprachmann: “Electrochemical methods for investigations in molten glass, illustrated at iron-and arsenic-doped soda-lime-silica glass melts”, J. Non-Cryst. Solids 127, 197–206 (1991)

    Article  Google Scholar 

  209. M. Leister, D. Ehrt: “Redox behaviour of iron and vanadium ions in silicate melts at temperatures up to 2000 °C”, Glastechn. Ber. Glass Sci. Technol. 72, 153–160 (1999)

    Google Scholar 

  210. T.Y. Tilquin, E. Herman, J. Glibert, P. Claes: In situ electrochemical investigation of copper in binary sodium silicate melts at 1000 °C“, Electrochim. Acta 40, 1933–1938 (1995)

    Google Scholar 

  211. M. Yokozeki, T. Moriyasu, H. Yamashita, T. Maekawa: “Electrochemical studies of the redox behavior of antimony ions in sodium borate and silicate melts”, J. Non-Cryst. Solids 202, 241–247 (1996)

    Article  ADS  Google Scholar 

  212. P. Claes, P. Duveiller, J.Y. Tilquin, J. Glibert: “In situ electrochemical and spectrophotometric investigation of the oxygen pressure dependence of the [Cr(VI)]/[Cr(III)] ratio in a borosilicate melt”, Ber. Bunsenges. Phys. Chem. 100, 1479–1483 (1996)

    Article  Google Scholar 

  213. J.-Y. Tilquin, J. Glibert, P. Claes: “Anodic polarization in molten silicates”, J. Non-Cryst. Solids 188, 266–274 (1995)

    Article  ADS  Google Scholar 

  214. P. Claes, Ch. Dauby, C. Dupont, L. van Cangh: “Method of and apparatus for monitoring the redox state of elements in glass”, US Patent 4: 557–743 (1985)

    Google Scholar 

  215. C. Rüssel: “The electrochemical behavior of some polyvalent elements in a soda-lime-silica glass melt”, J. Non-Cryst. Solids 119, 303–309 (1990)

    Article  ADS  Google Scholar 

  216. C. Rüssel: “Polyvalent ions in glass melts”, Glastechn. Ber. 63, 197–211 (1990)

    Google Scholar 

  217. C. Rüssel: “Voltammetric studies of the redox behaviour of chalcogenides in a soda-lime-silica glass melt”, Phys. Chem. Glasses 32, 138–141 (1991)

    Google Scholar 

  218. C. Rüssel: “On-line measurements of redox properties in glass forming melts”, Ceram. Trans. 29, 259–266 (1993)

    Google Scholar 

  219. C. Rüssel: “Voltammetry in molten glasses”, In Proc. Int. Congr. on Glass, Vol. 1 ( Chinese Ceram. Soc., Beijing 1995 ) pp. 321–330

    Google Scholar 

  220. O. Claußen, C. Rüssel: “Quantitative in-situ determination of iron in a sodalime-silica glass melt with the aid of square-wave voltammetry”, Glastechn. Ber. 69, 95–100 (1996)

    Google Scholar 

  221. O. Claußen, C. Russel: “Voltammetry in silicate and borate glass melts”, Ber. Bunsenges. Phys. Chem. 100, 1475–1478 (1996)

    Article  Google Scholar 

  222. D. Köpsel: Modellierung der Läuterung mit Na2SO4 unter oxidierenden Bedingungen, PhD Thesis ( TU Bergakademie, Freiberg 1991 )

    Google Scholar 

  223. W.L. Konijnendijk, J.H.J.M Buster: “Raman scattering measurements of silicate glasses containing sulphate”, J. Non-Cryst. Solids 23, 401–418 (1977)

    Article  ADS  Google Scholar 

  224. T. Kordon, C. Rüssel: “Voltammetric investigations in Na2SO4-refined sodalime-silica glass melts”, Glastechn. Ber. 63, 213–218 (1990)

    Google Scholar 

  225. A.A. Ahmed, N.A. Sharaf, R.A. Condrate, Sr.: “Raman microprobe investigation of sulphur-doped alkali borate glasses”, J. Non-Cryst. Solids 210, 59–69 (1997)

    Article  ADS  Google Scholar 

  226. J.E. Shelby: Handbook of Gas Diffusion in Solids and Melts ( ASM International, Materials Park, OH 1996 )

    Google Scholar 

  227. K. Papadopoulos: “The solubility of SO3 in soda-lime-silica melts”, Phys. Chem. Glasses 14, 60–65 (1973)

    Google Scholar 

  228. E. Kordes, B. Zöfelt, H. Pröger: “Die Mischungslücke im flüssigen Zustand zwischen Na-Ca-Silicaten und Na2SO4”, Z. Anorg. Allg. Chemie 264, 255–271 (1973)

    Article  Google Scholar 

  229. M.L. Pearce, J.F. Beisler: “Miscibility gap in the system sodium oxide-silicasodium sulfate at 1200°C”, J. Am. Ceram. Soc. 48, 40–42 (1965)

    Article  Google Scholar 

  230. E. Raask, R. Jessop: “Miscibility gap in the potassium sulphate — potassium silicate system at 1300°C”, Phys. Chem. Glasses 7, 200–201 (1966)

    Google Scholar 

  231. Z. Karch: “Läuterung der Glasmasse durch Anhydrit (CaSO4) — Theoretische Grundlagen des Auftretens von Sulfatgalle”, Sprechsaal 118, 767–773 (1985)

    Google Scholar 

  232. I. Barin, O. Knacke: Thermochemical Properties of Inorganic Substances (Springer, Berlin, Heidelberg 1973 )

    Google Scholar 

  233. R.J. Charles: “Activities in Li2O-, Na2O- and K2O-SiO2 solutions”, J. Am. Ceram. Soc. 50, 631–641 (1967)

    Article  Google Scholar 

  234. B.A. Shakhmatkin, M.M. Shul’ts: “Thermodynamic properties of glass-forming melts in the system Na2O-SiO2 between 800–1200 °C”, Sov. J. Glass Phys. Chem. 6, 89–94 (1980)

    Google Scholar 

  235. D.A. Neudorf, J.F. Elliott: “Thermodynamic properties of Na2O-SiO2-CaO melts at 1000 to 1100°C”, Metall Trans. 11B, 607–614 (1980)

    Article  Google Scholar 

  236. S. Yamaguchi, A. Imai, K.S. Goto: “Activity measurement of Na2O in Na2OSiO2 melts using beta-alumina as the solid electrolyte”, Scand. J. Metallurgy 11, 263–264 (1982)

    Google Scholar 

  237. C.J.B. Fincham, F.D. Richardson: “The behaviour of sulphur in silicate and aluminate melts”, Proc. Royal Soc. 233, 40–62 (1954)

    Article  ADS  Google Scholar 

  238. S. Nagashima, T. Katsura: “The solubility of sulfur in Na2O-SiO2 melts under various oxygen partial pressures at 1100 °C, 1250 °C, 1300 °C”, Bull. Chem. Soc. Jpn. 46, 3099–3103 (1973)

    Article  Google Scholar 

  239. F.J. Kohl, C.A. Stearns, G.C. Fryburg: “Sodium sulfate: vaporization thermodynamics and role in corrosive flames”, NASA Techn. Rep. TM X-71641

    Google Scholar 

  240. K.H. Lau, D. Cubicciotti, D.L. Hildenbrand: “Effusion studies of the vaporization/decomposition of potassium sulfate”, J. Electrochem. Soc. 126, 490–495 (1979)

    Article  Google Scholar 

  241. J.C. Halle, K.H. Stern: “Vaporization and decomposition of Na2SO4, thermodynamics and kinetics”, J. Phys. Chem. 84, 1699–1704 (1980)

    Article  Google Scholar 

  242. K.H. Lau, R.D. Brittain, R.H. Lamoreaux, D.L. Hildenbrand: “Studies of the vaporization/decomposition of alkali sulfates”, J. Electrochem. Soc. 132, 3041–3048 (1985)

    Article  Google Scholar 

  243. F.W. Krämer: “Ersatz der Antimonläuterung bei Alkali-Erdalkali-Silikatgläsern”, Laboratory Report 14 ( Schott Glas, Mainz 1994 )

    Google Scholar 

  244. Y. Kokubu, J. Chiba, T. Okamura: “The behavior of sodium sulfate during glass melting process”, Proc. 11. ICG Congress, Vol. 4, (Prague 1977 ) pp. 147–154

    Google Scholar 

  245. S. Manabe, K. Kitamura: “Effect of sodium sulfate and temperature on the fining of float glass”, J. Non-Cryst. Solids 80, 630–636 (1986)

    Article  ADS  Google Scholar 

  246. A.R. Conroy, W.H. Manring, W.C. Bauer: “The role of sulfate in the melting and fining of glass batch”, Glass Ind. 47, 84–89 (1966)

    Google Scholar 

  247. C. Tanaka, Y. Nakao, Y. Kokubu, T. Mori: “Decomposition behavior of sodium sulfate in two stage melting process (rough melting and fining) for manufacturing of sheet glass”, J. Ceram. Soc. Jpn. 94, 615–620 (1986)

    Google Scholar 

  248. H.P. Williams: “Einflußdes Oxidationszustandes des Gemenges auf die Glasläuterung mit schwefelhaltigen Läutermitteln”, Glastechn. Ber. 53, 189–194 (1980)

    Google Scholar 

  249. G. Nölle, M.A. Al Hamdam: “Kohlenstoff in Glasrohstoffgemengen”, Silikattechnik 41, 192–193 (1990)

    Google Scholar 

  250. W. Simpson, D.D. Myers: “The redox number concept and ist use by the glass technologist”, Glass Technology 19, 82–85 (1978)

    Google Scholar 

  251. W.H. Manring, R.E. Davis: “Controlling redox conditions in glass melting”, Glass Ind. 59, 13–30 (1978)

    Google Scholar 

  252. W.H. Manring, G.M. Diken: “A practical approach to evaluating redox phenomena involved in the melting and fining of soda-lime glasses”, J. Non Cryst. Solids 39, 813–818 (1980)

    Article  ADS  Google Scholar 

  253. H. Müller-Simon, K.W. Mergler: “Electrochemical measurements of oxygen activity of glass melts in glass melting furnaces”, Glastechn. Ber. 61, 293–299 (1988)

    Google Scholar 

  254. H. Müller-Simon, K.W. Mergler, H.A. Schäffer: “Oxygen activity measurements of melts in glass tanks using electrochemical sensors”, In: Glass 89, Proc. XV. Int. Congr. on Glass, Leningrad 1989, Vol. la, ed. by O.V. Mazurin (Nauka, Leningrad 1989 ) pp. 150–155

    Google Scholar 

  255. Kühnreich and Meixner: “Redox control in glass melts. ZrO2 sensor for continuous measurement in glass production”, Advertisement in Glastechn. Ber. Glass Sci. Technol., for instance in 71 (7), V (1998)

    Google Scholar 

  256. F.G.K. Baucke, R.-D. Werner, H. Müller-Simon, K.W. Mergler: “Application of oxygen sensors in industrial glass melting tanks”, Glastechn. Ber. Glass Sci. Technol. 69, 57–63 (1996)

    Google Scholar 

  257. A. Lenhart, H.A. Schäffer: “Elektrochemische Messung der Sauerstoffaktivität in Glasschmelzen”, Glastechn. Ber. 58, 139–147 (1985)

    Google Scholar 

  258. H. Müller-Simon, K.W. Mergler: “Sensor for oxygen activity measurements in glass melts”, Glastechn. Ber. 64, 49–51 (1991)

    Google Scholar 

  259. F.G.K. Baucke: “Zur elektrolytischen Läuterung”, Laboratory Report 60/92 ( Schott Glas, Mainz 1992 )

    Google Scholar 

  260. F.G.K. Baucke, T. Pfeiffer: “Verfahren zur Läuterung oxidischer Schmelzen”, German Patent 42 07 059 (Oct. 1993)

    Google Scholar 

  261. C. Schwand, W. Weppner: “Variation of the oxygen exchange rate of zirconiabased electrodes by electrochemical pretreatment”, Solid State Ionics 112, 229–236 (1998)

    Article  Google Scholar 

  262. K.S. Goto: Solid State Electrochemistry and Its Application to Sensors and Electronic Devices, Materials Science Monographs, Vol. 45 (Elsevier, Amsterdam 1988) Chap. 5, pp. 90–124

    Google Scholar 

  263. J. Richter: “Thermal diffusion in ionic melts”, Electrochim. Acta 22, 1035–1042 (1972)

    Article  Google Scholar 

  264. W. Jost, K. Hauffe: Diffusion, Methoden der Messung und Auswertung, 2nd ed., Fortschritte der physikalischen Chemie (Steinkopff, Darmstadt 1972) Chap. 7, pp. 247–254

    Google Scholar 

  265. Y. Ukyo, K.S. Goto: “Coupling phenomena in molten iron alloys and slags at high temperature”, Tetsu to Hagane 68, 1971–1980 (1982)

    Google Scholar 

  266. H. Reuther, J. Wiegmann, W. Hinz: “Thermotransport in Silicatgläsern”, Part 1: ”Alkalisilicatgläser”, Glastechn. Ber. 56, 19–25 (1983)

    Google Scholar 

  267. H. Reuther, J. Wiegmann, W. Hinz: “Untersuchungen an Kieselglas und allgemeine Schlußfolgerungen”, Glastechn. Ber. 56, 47–50 (1983)

    Google Scholar 

  268. K. Mücke: Thermotransport in Glasschmelzen, Diploma Thesis ( FH Fresenius, Wiesbaden 1984 )

    Google Scholar 

  269. F.G.K. Baucke, K. Mücke: “Measurement of standard Seebeck coefficients in nonisothermal glass melts by means of ZrO2 electrodes”, J. Non-Cryst. Solids 84, 174–182 (1986)

    Article  ADS  Google Scholar 

  270. F.G.K. Baucke: “Measurement and significance of standard Seebeck coefficients in oxidic glass-forming melts”, In: Proc. XV International Congress on Glass 1989, ed. by O.V. Mazurin ( Leningrad NAUKA, Leningrad 1989 ) Vol. 2b, pp. 263–266

    Google Scholar 

  271. W. Oldekop: “über thermoelektrische Erscheinungen an Gläsern”, Glastechn. Ber. 29, 73–78 (1956)

    Google Scholar 

  272. D.E. Carlson, C.E. Trzeciak: “Thermoelectric effects in ion conducting glasses”, Phys. Chem. Glasses 14, 10–15 (1973)

    Google Scholar 

  273. N. Cusack, P. Kendall: “The absolute scale of thermoelectric power at high temperature”, Proc. Phys. Soc. (London) 72, 898–901 (1958)

    Article  ADS  Google Scholar 

  274. C.D. Scholz: Entwicklung eines Thermogradientenofens, Diploma Thesis ( FH Rheinland-Pfalz, Bingen 1991 )

    Google Scholar 

  275. E. Plumat: “Etude des phénomènes de contact entre verre et oxyde à haute température par les mesures de potentiel électrique”, Silicates Industriels 19, 141–154 (1954)

    Google Scholar 

  276. J.H. Cowan, W.M. Buehl, J.R. Hutchins, III: “An electrochemical theory for oxygen reboil”, J. Am. Ceram. Soc. 49, 559–562 (1966)

    Article  Google Scholar 

  277. E.J. Horniak, Jr., P.D. Perry: “Electric forehearth and method of melting therein”, US Patent 4 227 909 (1979)

    Google Scholar 

  278. E.J. Horniak, Jr., P.D. Perry: “Verfahren und Vorrichtung zur Herstellung von bläschenfreiem erschmolzenen Glas”, DOS 30 22 091, January 1981 3.278 V.M. Shostak, et al.: British Patent GB 2 175 985, July 1984

    Google Scholar 

  279. P. Bedros, J. Stverák: “Studium der Ursachen der Entstehung von Blasen auf einem Platinüberzug in einer Speiserrinne und Maßnahmen dagegen”, Sklár Keram. 35, 142–143 (1985)

    Google Scholar 

  280. G. Brooks: “Electrolysis under control”, Glass 74, 393–395 (1997)

    Google Scholar 

  281. A.G. Bossard, E.R. Begley: “Refractory blistering in glass”, In: Symposium on Defects in Glass, Ann. Meeting ICG (Tokyo, Kyoto 1966 ) pp. 69–81

    Google Scholar 

  282. P. Bedros, M. Fojtkovâ: “Bubble formation at zircon refractories in Simax glass” (Orig. Czech.), Sklâr Keram. 34, 349–354 (1984)

    Google Scholar 

  283. F.G.K. Baucke, G. Röth: “Electrochemical mechanism of the oxygen bubble formation at the interface between oxidic melts and zirconium silicate refractories”, Glastechn. Ber. 61, 109–118 (1988)

    Google Scholar 

  284. F.G.K. Baucke, G. Röth: “Electrochemical mechanism of the oxygen bubble formation at the interface between oxidic melts and zirconium silicate refractories”, In: Advances in the Fusion of Glass, Proc. 1st Int. Conf. on Adv. in the Fusion of Glass, Alfred Univ., Alfred, New York, June 14–17, 1988, ed. by D.F. Bickford et al. ( Am. Ceram. Soc., Westerville, OH 1988 ) pp. 541–5416

    Google Scholar 

  285. F.G.K. Baucke: “Reaktionsmechanismus aufgeklärt” (Engl. Version: “Reaction mechanism elucidated”), Schott Information 50, 10–11 (1989)

    Google Scholar 

  286. F.G.K. Baucke: “Electrochromic applications”, Mater. Sci. Eng. 10, 285–292 (1991)

    Article  Google Scholar 

  287. Corhart Refractories, Ceramic Products Div., Corning Glass Works (USA): “Corhart® ZS dense zircon refractory”, in Fiberglass and Specialty Refractories,1985, pp. 1.00 ff., 1.01 ff.

    Google Scholar 

  288. R. Hammerschmidt, H. Hausner: “Elektrische Leitfähigkeit von Wannensteinen vor und nach dem Einsatz in Glasschmelzwannen”, Glastechn. Ber. 55, 30–36 (1982)

    Google Scholar 

  289. H. Schmalzried: Chemical Kinetics of Solids ( VCH, Weinheim 1995 ) pp. 209–233

    Book  Google Scholar 

  290. D.J.G. Ives, G.J. Janz: “The concept of electrode potential”, in Reference Electrodes. Theory and Practice, ed. by D.J.G. Ives, G.J. Janz ( Academic Press, New York 1961 ) pp. 3–14

    Google Scholar 

  291. G. Kortüm: Lehrbuch der Elektrochemie ( VCH, Weinheim 1957 ) pp. 241–271

    Google Scholar 

  292. R. Brdicka: Grundlagen der physikalischen Chemie, 7th ed. ( VEB Deutscher Verlag der Wissenschaften, Berlin 1968 ) pp. 672–673

    Google Scholar 

  293. F.G.K. Baucke, G. Röth: “Verfahren und Vorrichtung zum Konditionieren von Schmelzwannenauskleidungselementen aus Zirkonsilikat”, German Patent 41 09 652 (1992)

    Google Scholar 

  294. F.W. Krämer: “Analysis of gases evolved by AZS refractories and by refractory/glass melt reactions. Techniques and results. Contribution to the bubble formation mechanism of AZS material”, Glastechn. Ber. 65, 93–98 (1992)

    Google Scholar 

  295. F.G.K. Baucke: “Electrochromic mirrors with variable reflectance”, Solar Energy Mat. 16, 67–77 (1987)

    Article  ADS  Google Scholar 

  296. R.S. Crandall, B.W. Faughnan: “Dynamics of coloration of amorphous electrochromic films of WO3 at low voltages”, Appl. Phys. Lett. 28, 95–97 (1976)

    Article  ADS  Google Scholar 

  297. B.W. Faughnan, R.S. Crandall, M.A. Lampert: “Model for the bleaching of WO3 electrochromic films by an electric field”, Appl. Phys. Lett. 27, 275–277 (1975)

    Article  ADS  Google Scholar 

  298. F.G.K. Baucke, W.A. Frank: “Conductivity cell for molten glasses and salts”, Glastechn. Ber. 49, 157–161 (1976)

    Google Scholar 

  299. S. Kropp: Vereinfachung einer Methode zur Messung der elektrischen Leitfähigkeit von Salz- und Glasschmelzen, Diploma Thesis ( FH Fresenius, Wiesbaden 1980 )

    Google Scholar 

  300. R.-D. Werner: Elektrochemische Untersuchungen in oxidischen Glasschmelzen. Der Mischalkali-Effekt im flüssigen Zustand, Diploma Thesis ( FH Rheinland-Pfalz, Bingen 1987 )

    Google Scholar 

  301. F.G.K. Baucke, J. Braun, G. Röth, R.-D. Werner: “Accurate conductivity cell for molten glasses and salts”, Glastechn. Ber. 62, 122–126 (1989)

    Google Scholar 

  302. F.G.K. Baucke, R.-D. Werner: “Temperature-dependent mixed alkali effect in silicate melts”, In: Glass 89, Proc. of the XV. Int. Congress on Glass 1989, Vol. 2a, Properties of Glass. New Methods of Glass Formation. Techn. Sessions, ed. by O.V. Mazurin ( NAUKA, Leningrad 1989 ) pp. 242–246

    Google Scholar 

  303. O. Svensson: “Electrical conductivity of glasses in the composition range of 24% PbO lead crystal”, Glasteknisk Tidskrift 35 (1), 5–11 (1980)

    MathSciNet  Google Scholar 

  304. O. Svensson: “Electrical conductivity of glasses in the composition range of 24% PbO lead crystal — complementary measurements, Part IP”, Glasteknisk Tidskrift 35 (2), 37–40 (1980)

    MathSciNet  Google Scholar 

  305. Th. Pfeiffer, R. Müller, R.D. Werner: “Transport phenomena in oxidic glass- forming melts”, Ber. Bunsenges. Phys. Chem. 100, 1503–1507 (1996)

    Article  Google Scholar 

  306. K.-P. Müller: “Struktur und Eigenschaften von Gläsern und glasbildenden Schmelzen, Teil I. Elektrische Leitfähigkeit geschmolzener Alkaliborate und -phosphate”, Glastechn. Ber. 42, 1–9 (1969)

    Google Scholar 

  307. K. Endell, J. Hellbrügge: “über den Einfluß des Ionenradius und der Wertigkeit der Kationen auf die elektrische Leitfähigkeit von Silikatschmelzen zwischen 1250 und 1450 °C”, Glastechn. Ber. 20, 277–287 (1942)

    Google Scholar 

  308. J.O.M. Bockris, J.A. Kitchener, S. Ignatowicz, et al.: “Electrical conductance in liquid silicates”, Trans. Faraday Soc. 48, 75–91 (1952)

    Article  Google Scholar 

  309. C. Kröger, P. Weisgerber: “Zur Bestimmung der elektrischen Leitfähigkeit von Natrium-Silikatschmelzen”, Z. Phys. Chem. N.F. 18, 90–109 (1958)

    Article  Google Scholar 

  310. C. Kröger: Das elektrische und Wärme-Leitvermögen von Glasgemengen und Glasschmelzen, Forsch. Ber. des Landes Nordrhein-Westfalen, No. 863 ( Westdeutscher Verlag, Köln 1960 )

    Google Scholar 

  311. K.A. Kostanyan, K.S. Saakyan: “The electrical conductivity of industrial glasses and their tendency towards ‘automisregulation’ in the melt”, Glass and Ceramics 25, 159–161 (1969)

    Article  Google Scholar 

  312. K. Matiasovskÿ, V. Danek, B. Lillebuen: “On the frequency-and temperature-dependence of the conductivity in molten salts”, Electrochim. Acta 17, 463–469 (1972)

    Article  Google Scholar 

  313. J. Stanek: “Probleme der modernen Glasschmelz-und Verarbeitungstechnologie, T. 1”, Silikattechnik 25, 336–339 (1974)

    Google Scholar 

  314. E.N. Boulos, J.W. Smith, C.T. Moynihan: “Rapid and accurate measurements of electrical resistivity on glass melts”, Glastechn. Ber. 56, 509–514 (1983)

    Google Scholar 

  315. R.A. Robinson, R.H. Stokes: Electrolyte Solutions, 2nd ed. ( Butterworths, London 1968 ) pp. 87–91

    Google Scholar 

  316. A.M. Feltham, M. Spiro: “Platinized platinum electrodes”, Chem. Rev. 71, 177–193 (1971)

    Article  Google Scholar 

  317. A. Piechurowski: “Method of measuring glass resistance at high temperatures” (Orig. Pol.), Szklo. Ceram. 26, 2–5 (1975)

    Google Scholar 

  318. H. Wakayabashi, A. Terai: “Measurement of electrical conductivity for molten salts”, Bull. Govt. Ind. Res. Inst. Osaka 35, 58–61 (1984)

    Google Scholar 

  319. Landolt-Börnstein: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, 6th ed., Vol. 2, Part 1 (Springer, Berlin, Heidelberg 1971 ) p. 587

    Google Scholar 

  320. J.O. Isard: “The mixed alkali effect in glass”, J. Non-Cryst. Solids 1, 235–261 (1969)

    Article  ADS  Google Scholar 

  321. D.E. Day: “Mixed alkali glasses — their properties and uses”, J. Non-Cryst. Solids 21, 343–372 (1976)

    Article  ADS  Google Scholar 

  322. R.M. Hakim, D.R. Uhlmann: “On the mixed alkali effect in glasses”, Phys. Chem. Glasses 8, 174–177 (1967)

    Google Scholar 

  323. J.R. Hendricksen, P.J. Bray: “A theory for the mixed alkali effect in glass. Part 1”, Phys. Chem. Glasses 13, 43–49 (1972)

    Google Scholar 

  324. J.R. Hendricksen, P.J. Bray: “A theory for the mixed alkali effect in glass. Part 2”, Phys. Chem. Glasses 13, 107–115 (1972)

    Google Scholar 

  325. R.H. Doremus: “Mixed-alkali effect and interdiffusion of Na and K ions in glass”, J. Am. Ceram. Soc. 57, 478–480 (1974)

    Article  Google Scholar 

  326. V.N. Filipovich: “Theory of the electrical conductivity of two-alkali silicate glasses and the mixed-alkali effect”, Fiz. Khim. Stekla 6, 369–382 (1980)

    Google Scholar 

  327. C.T. Moynihan, N.S. Saad, D.C. Tran, A.V. Lesikar: “Mixed-alkali effect in the dilute foreign-alkali region. Failure of the strong electrolyte/cationic interaction model”, J. Am. Ceram. Soc. 63, 458–464 (1980)

    Article  Google Scholar 

  328. H. Jain, N.L. Peterson, H.L. Downing: “Tracer diffusion and electrical con-ductivity in sodium-cesium silicate glasses”, J. Non-Cryst. Solids 55, 283–300 (1983)

    Article  ADS  Google Scholar 

  329. G. Tomandl, H.A. Schaeffer: “The mixed-alkali effect–a permanent challenge”, J. Non-Cryst. Solids 73, 179–196 (1985)

    Article  ADS  Google Scholar 

  330. R. Wäsche, R. Bruckner: “The structure of mixed alkali phosphate melts as indicated by their non-Newtonian flow behaviour and optical birefringence”, Phys. Chem. Glasses 27, 87–94 (1986)

    Google Scholar 

  331. J.M. Hyde, M. Tomozawa, M. Yoshiyagawa: “A comparison of the dielectric characteristics of single alkali and mixed alkali glasses”, Phys. Chem. Glasses 28, 174–176 (1987)

    Google Scholar 

  332. P. Mazzoldi, A. Miotello: “Mixed alkali effect in glasses: a new model using the thermodynamics of irreversible processes”, J. Non-Cryst. Solids 96, 897–904 (1987)

    Article  ADS  Google Scholar 

  333. W.C. LaCourse: “A defect model for the mixed alkali effect”, J. Non-Cryst. Solids 96, 905–912 (1987)

    Article  ADS  Google Scholar 

  334. R. Terai, H. Wakayabashi, H. Yamanaka: “Haven ratio in mixed alkali glasses”, J. Non-Cryst. Solids 103, 137–142 (1988)

    Article  ADS  Google Scholar 

  335. G. De Marchi, P. Mazzoldi, A. Miotello: “Ionic conductivity in glass network”, J. Non-Cryst. Solids 123, 321–323 (1990)

    Article  Google Scholar 

  336. Z. Boksay: “Effect of mixing mobile ions in glasses on transport processes”, J. Non-Cryst. Solids 123, 324–327 (1990)

    Article  ADS  Google Scholar 

  337. M.D. Ingram, P. Maas, A. Bunde: “Ionic conductivity and memory effects in glassy electrolytes”, Ber. Bunsenges. Phys. Chem. 95, 1002–1006 (1991)

    Article  Google Scholar 

  338. M. Tomozawa: “Alkali ion transport in mixed alkali glasses”, J. Non-Cryst. Solids 152, 59–69 (1993)

    Article  ADS  Google Scholar 

  339. R.M. Wenslow, K.T. Mueller: “Cation sites in mixed-alkali phosphate glasses”, J. Non-Cryst. Solids 231, 78–88 (1998)

    Article  ADS  Google Scholar 

  340. K.A. Kostanyan: “Investigation of the conductivity neutralization effect in fused borate glasses”, In The Structure of Glass, Vol. 2, Proc. Third All-Union Conf. on the Glassy State, Leningrad 1959 (Consultants Bureau, New York 1960) pp. 234–236

    Google Scholar 

  341. R.E. Tickle: “The electrical conductance of molten alkali silicates. Part 1. Experiments and results”, Phys. Chem. Glasses 8, 101–112 (1967)

    Google Scholar 

  342. R.E. Tickle: “The electrical conductance of molten alkali silicates. Part 2. Theoretical discussion”, Phys. Chem. Glasses 8, 113–124 (1967)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baucke, F.G.K., Duffy, J., Köpsel, D. (2001). Electrochemistry of Glass-Forming Melts. In: Bach, H., Baucke, F.G.K., Krause, D. (eds) Electrochemistry of Glasses and Glass Melts, Including Glass Electrodes. Schott Series on Glass and Glass Ceramics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04486-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04486-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08206-1

  • Online ISBN: 978-3-662-04486-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics