Skip to main content

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 33))

  • 130 Accesses

Abstract

Cellular homeostasis of various solid tissues as well as those composed of single cells such as skin, intestine and the haematopoietic system is maintained by a hierarchical structured cell system, with stem cells as their cellular origin. Stem cells are functionally defined by their capacity to self-renew and to lead to multi-lineage differentiation; hence, stem cells have the ability to generate both new stem cells and to clonally regenerate all the different cell types that constitute a stem cell system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auerbach R (1961) Experimental analysis of the origin of the cell types in the development of the mouse thymus. Dev Biol 3: 336–364

    Article  PubMed  CAS  Google Scholar 

  • Auerbach R, Huang H, Lu L (1996) Hematopoietic stem cells in the mouse embryonic yolk sac. Stem Cells 14: 269–280

    Article  PubMed  CAS  Google Scholar 

  • Bjornson CRR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283: 534–537

    Article  PubMed  CAS  Google Scholar 

  • Bonifer C, Faust N, Geiger H, Müller AM (1998) Developmental changes in the differentiation capacity of haematopoietic stem cells. Immunol Today 19: 236–241

    Article  PubMed  CAS  Google Scholar 

  • Borghese E (1959) The present state of research on WW mice. Acta Anat 36: 185–220

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Paige CJ, Wu GE (1992) Enumeration and characterization of DJH structures in mouse fetal liver. EMBO J 11: 1891–1899

    PubMed  CAS  Google Scholar 

  • Charbord P, Tavian M, Humeau L, Peault B (1996) Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood 87: 4109–4119

    PubMed  CAS  Google Scholar 

  • Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125: 725–732

    PubMed  CAS  Google Scholar 

  • Cline MJ, Moore MAS (1972) Embryonic origin of the mouse macrophage. Blood 39: 842–849

    PubMed  CAS  Google Scholar 

  • Cormier F, Dieterlen-Lievre F (1988) The wall of the chick embryo aorta harbours M-CFC, G-CFC, GM-CFC and BFU-E. Development 102: 279–285

    PubMed  CAS  Google Scholar 

  • Cormier F, de Paz P, Dieterlen-Lievre F (1986) In vitro detection of cells with monocytic potentiality in the wall of the chick embryo aorta. Dev Biol 118: 167–175

    Article  PubMed  CAS  Google Scholar 

  • Craig ML, Russell ES (1964) A developmental change in hemoglobins correlated with an embryonic red cell population in the mouse. Dev Biol 10: 191–201

    Article  PubMed  CAS  Google Scholar 

  • Cumano A, Dieterlen-Lievre F, Godin I (1996) Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86: 907–916

    Article  PubMed  CAS  Google Scholar 

  • Dantschakoff W (1908) Untersuchungen über die Entwicklung des Blutes und Bindegewebes bei den Vögeln. Anat Hefte 37: 471–589

    Article  Google Scholar 

  • de Aberle SB (1928) A study of the hereditary anaemia of mice. Am J Anat 40: 219–249

    Article  Google Scholar 

  • de Felici M, Heasman J, Wylie CC, McLaren A (1986) Macrophages in the urogential ridge of the mid-gestation mouse fetus. Cell Differ 18: 119–129

    Article  PubMed  Google Scholar 

  • Dieterlen-Lievre F (1975) On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J Embryol Exp Morphol 33: 607–619

    PubMed  CAS  Google Scholar 

  • Dzierzak E, Müller A, Sinclair A, Miles C, Gillett N, Daly B, Sanchez M-J, Medvinsky A (1995) Hematopoietic stem cell development in the mouse embryo. In: Proceedings of the 9th conference on hemoglobin switching, pp 109-121

    Google Scholar 

  • Eichmann A, Corbel C, Le Douarin NM (1998) Segregation of the embryonic vascular and hemopoietic systems. Biochem Cell Biol 76: 939–946

    Article  PubMed  CAS  Google Scholar 

  • Elliott JF, Rock EP, Patten PA, Davis MM, Chien Y-h (1988) The adult T-cell receptor delta-chain is diverse and distinct from that of fetal thymocytes. Nature 331: 627–631

    Article  PubMed  CAS  Google Scholar 

  • Faust N, Huber MC, Sippel AE, Bonifer C (1997) Different macrophage populations develop from embryonic/fetal and adult hematopoietic tissues. Exp Hematol 25: 432–444

    PubMed  CAS  Google Scholar 

  • Flake AW, Zanjani ED (1999) In utero hematopoietic stem cell transplantation: ontogenic opportunities and biologic barriers. Blood 94: 2179–2191

    PubMed  CAS  Google Scholar 

  • Fleischman RA, Custer RP, Mintz B (1982) Totipotent hematopoietic stem cells: normal self-renewal and differentiation after transplantation between mouse fetuses. Cell 30: 351–359

    Article  PubMed  CAS  Google Scholar 

  • Friedrich G, Soriano P (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5: 1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Garman RD, Doherty PJ, Raulet DH (1986) Diversity, rearrangement, and expression of murine T cell gamma genes. Cell 45: 733–742

    Article  PubMed  CAS  Google Scholar 

  • Geiger H, Sick S, Bonifer C, Müller AM (1998) Globin gene expression is re-programmed in chimeras generated by injecting adult hematopoietic stem cells into mouse blastocysts. Cell 93: 1055–1065

    Article  PubMed  CAS  Google Scholar 

  • Godin IE, Garcia-Porrero JA, Coutinho A, Dieterlen-Lievre F, Marcos MAR (1993) Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature 364: 67–70

    Article  PubMed  CAS  Google Scholar 

  • Godin I, Dieterlen-Lievre F, Cumano A (1995) Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc Natl Acad Sci USA 92: 773–777

    Article  PubMed  CAS  Google Scholar 

  • Gribnau J, de Boer E, Trimborn T, Wijgerde M, Milot E, Grosveld F, Fraser P (1998) Chromatin interaction mechanism of transcriptional control in vivo. EMBO J 17: 6020–6027

    Article  PubMed  CAS  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cells transplantation. Nature 401: 390–394

    PubMed  CAS  Google Scholar 

  • Harrison DE, Zhong RK, Jordan CT, Lemischka IR, Astle CM (1997) Relative to adult marrow, fetal liver repopulates nearly five times more effectively long-term than short-term. Exp Hematol 25: 293–297

    PubMed  CAS  Google Scholar 

  • Hayakawa K, Hardy RR, Herzenberg LA, Herzenberg LA (1985) Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J Exp Med 161: 1554–1568

    Article  PubMed  CAS  Google Scholar 

  • Herzenberg LA, Kantor AB, Herzenberg LA (1992) Layered evolution in the immune system. A model for the ontogeny and development of multiple lymphocyte lineages. Ann NY Acad Sci 651: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Houssaint E (1981) Differentiation of the mouse hepatic primordium. II. Extrinsic origin of the haemopoietic cell line. Cell Differ 10: 243–252

    Article  PubMed  CAS  Google Scholar 

  • Huber TL, Zon LI (1998) Transcriptional regulation of blood formation during Xenopus development. Semin Immunol 10: 103–109

    Article  PubMed  CAS  Google Scholar 

  • Ikuta K, Kina T, MacNeil I, Uchida N, Peault B, Chien Y-h, Weissman IL (1990) A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62: 863–874

    Article  PubMed  CAS  Google Scholar 

  • Kau CL, Turpen JB (1983) Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hemopoietic cells in Xenopus laevis. J Immunol 131: 2262–2266

    PubMed  CAS  Google Scholar 

  • Lafaille JJ, DeCloux A, Bonneville M, Takagaki Y, Tonegawa S (1989) Junctional sequences of T cell receptor gamma delta genes: implications for gamma delta T cell lineages and for a novel intermediate of V-(D)-J joining. Cell 59: 859–870

    Article  PubMed  CAS  Google Scholar 

  • Lansdorp PM (1995) Developmental changes in the function of hematopoietic stem cells. Exp Hematol 23: 187–191

    PubMed  CAS  Google Scholar 

  • Lansdorp PM, Dragowska W, Mayani H (1993) Ontogeny-related changes in proliferative potential of human hematopoietic cells. J Exp Med 178: 787–791

    Article  PubMed  CAS  Google Scholar 

  • Maeno M, Tochinai S, Katagiri C (1985) Differential participation of ventral and dorsolateral mesoderms in the hemopoiesis of Xenopus, as revealed in diploid-triploid or interspecific chimeras. Dev Biol 110: 503–508

    Article  PubMed  CAS  Google Scholar 

  • Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86: 897–906

    Article  PubMed  CAS  Google Scholar 

  • Medvinsky AL, Samoylina NL, Müller AM, Dzierzak EA (1993) An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature 364: 64–67

    Article  PubMed  CAS  Google Scholar 

  • Medvinsky AL, Gan Ol, Semenova ML, Samoylina NL (1996) Development of day-8 colony-forming unit-spleen hematopoietic progenitors during early murine embryogenesis: spatial and temporal mapping. Blood 87: 557–566

    PubMed  CAS  Google Scholar 

  • Metcalf D, Moore MAS (1971) Embryonic aspects of haematopoiesis. In: Neuberger A, Tatum EL (eds) Haematopoietic cells. North-Holland, Amsterdam, pp 172–271

    Google Scholar 

  • Moore MAS, Owen JJT (1965) Chromosome marker studies on the development of the haematopoietic system in the chicken embryo. Nature 208: 956–990

    Article  PubMed  Google Scholar 

  • Moore MAS, Owen JJT (1967) Stem-cell migration in developing myeloid and lymphoid systems. Lancet ii: 658–659

    Article  Google Scholar 

  • Morioka Y, Naito M, Sato T, Takahashi K (1994) Immunophenotypic and ultrastructural heterogeneity of macrophage differentiation in bone marrow and fetal hematopoiesis of mouse in vitro and in vivo. J Leukoc Biol 55: 642–651

    PubMed  CAS  Google Scholar 

  • Morris L, Graham CF, Gordon S (1991) Macrophages in haemopoietic and other tissues of the developing mouse detected by the monoclonal antibody F4/80. Development 112: 517–526

    PubMed  CAS  Google Scholar 

  • Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL (1995) The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci USA 92: 10302–10306

    Article  PubMed  CAS  Google Scholar 

  • Müller AM, Dzierzak EA (1993) ES cells have only a limited lymphopoietic potential after adoptive transfer into mouse recipients. Development 118: 1343–1351

    PubMed  Google Scholar 

  • Müller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E (1994) Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1: 291–301

    Article  PubMed  Google Scholar 

  • Naito M, Takahashi K, Nishikawa S (1990) Development, differentiation, and maturation of macrophages in the fetal mouse liver. J Leukoc Biol 48: 27–37

    PubMed  CAS  Google Scholar 

  • Okada S, Nakauchi H, Nagayoshi K, Nishikawa S-I, Miura Y, Suda T (1992) In Vivo and In Vitro Stem Cell Function of c-kit- and Sea-1-Positive Murine Hematopoietic Cells. Blood 80: 3044–3050

    PubMed  CAS  Google Scholar 

  • Owen JJ, Ritter MA (1969) Tissue interaction in the development of thymus lymphocytes. J Exp Med 129: 431–442

    Article  PubMed  CAS  Google Scholar 

  • Peault B (1996) Hematopoietic stem cell emergence in embryonic life: developmental hematology revisited. J Hematother 5: 369–378

    Article  PubMed  CAS  Google Scholar 

  • Rebel VI, Miller CL, Thornbury GR, Dragowska WH, Eaves CJ, Lansdorp PM (1996) A comparison of long-term repopulating hematopoietic stem cells in fetal liver and adult bone marrow from the mouse. Exp Hematol 24: 638–648

    PubMed  CAS  Google Scholar 

  • Russell ES (1979) Hereditary anemias of the mouse: a review for geneticists. Adv Genet 20: 357–459

    Article  PubMed  CAS  Google Scholar 

  • Sabin FR (1920) Studies on the origin of blood-vessels and of red blood-corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Carnegie Inst Wash Publ (Contribut Embryol 9) 272: 213–262

    Google Scholar 

  • Strouboulis J, Dillon N, Grosveld F (1992) Developmental regulation of a complete 70-kb human beta-globin locus in transgenic mice. Genes Dev 6: 1857–1864

    Article  PubMed  CAS  Google Scholar 

  • Tavian M, Coulombel L, Luton D, Clemente HS, Dieterlen-Lievre F, Peault B (1996) Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood 87: 67–72

    PubMed  CAS  Google Scholar 

  • Toles JF, Chui DHK, Belbeck LW, Starr E, Barker JE (1989) Hemopoietic stem cells in murine embryonic yolk sac and peripheral blood. Proc Natl Acad Sci USA 86: 7456–7459

    Article  PubMed  CAS  Google Scholar 

  • Turker MS (1998) Estimation of mutation frequencies in normal mammalian cells and the development of cancer. Semin Cancer Biol 8: 407–419

    Article  PubMed  CAS  Google Scholar 

  • Turpen JB, Kelley CM, Mead PE, Zon LI (1997) Bipotential primitive-definitive hematopoietic progenitors in the vertebrate embryo. Immunity 7: 325–334

    Article  PubMed  CAS  Google Scholar 

  • Tyan ML, Herzenberg LA (1968) Studies on the ontogeny of the mouse immune system. II. Immunoglobulin-producing cells. J Immunol 101: 446–450

    PubMed  CAS  Google Scholar 

  • Weissman I, Papaioannou V, Gardner R (1977) Fetal hematopoietic origins of the adult hematolymphoid system (Clarkson B ed). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 33–47

    Google Scholar 

  • Yoder MC, Hiatt K, Dutt P, Mukherjee P, Bodine DM, Orlic D (1997a) Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 7: 335–344

    Article  PubMed  CAS  Google Scholar 

  • Yoder MC, Hiatt K, Mukherjee P (1997b) In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus. Proc Natl Acad Sci USA 94: 6776–6780

    Article  PubMed  CAS  Google Scholar 

  • Zanjani ED, Ascensao JL, Tavassoli M (1993) Liver-derived fetal hematopoietic stem cells selectively and preferentially home to the fetal bone marrow. Blood 81: 399–404

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

W. Holzgreve M. Lessl

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller, A.M., Geiger, H., Eichholz, G., Harder, F. (2001). Origin and Developmental Plasticity of Haematopoietic Stem Cells. In: Holzgreve, W., Lessl, M. (eds) Stem Cells from Cord Blood, in Utero Stem Cell Development and Transplantation-Inclusive Gene Therapy. Ernst Schering Research Foundation Workshop, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04469-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04469-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04471-1

  • Online ISBN: 978-3-662-04469-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics