Skip to main content

Evolutionary Algorithms: From Recombination to Search Distributions

  • Chapter
Theoretical Aspects of Evolutionary Computing

Part of the book series: Natural Computing Series ((NCS))

Abstract

First we show that all genetic algorithms can be approximated by an algorithm which keeps the population in linkage equilibrium. Here the genetic population is given as a product of univariate marginal distributions. We describe a simple algorithm which keeps the population in linkage equilibrium. It is called the univariate marginal distribution algorithm (UMDA). Our main result is that UMDA transforms the discrete optimization problem into a continuous one defined by the average fitness W(p1, . . . , p n ) as a function of the univariate marginal distributions p i. For proportionate selection UMDA performs gradient ascent in the landscape defined by W(p). We derive a difference equation for p i which has already been proposed by Wright in population genetics. We show that UMDA solves difficult multimodal optimization problems. For functions with highly correlated variables UMDA has to be extended. The factorized distribution algorithm (FDA) uses a factorization into marginal and conditional distributions. For decomposable functions the optimal factorization can be explicitly computed. In general it has to be computed from the data. This is done by LFDA. It uses a Bayesian network to represent the distribution. Computing the network structure from the data is called learning in Bayesian network theory. The problem of finding a minimal structure which explains the data is discussed in detail. It is shown that the Bayesian information criterion is a good score for this problem.

Real World Computing Partnership

GMF — Forschungszentrum Informationstechnik

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Asoh and H. Mühlenbein. On the mean convergence time of evolutionary algorithms without selection and mutation. In Y. Davidor, H.-P. Schwefel, and R. Männer, editors, Proceedings of the 3rd Conference on Parallel Problem Solving from Nature, LNCS 866, pages 88–97. Springer-Verlag, Berlin Heidelberg New York, 1994.

    Chapter  Google Scholar 

  2. S. Baluja and R. Caruana. Removing the genetics from the standard genetic algorithm. In A. Prieditis and S. Russell, editors, Proceedings of the 12th International Conference on Machine Learning, pages 38–46. Morgan Kaufmann, San Francisco, 1995.

    Google Scholar 

  3. R. R. Bouckaert. Properties of Bayesian network learning algorithms. In R. Lopez de Mantaras and D. Poole, editors, Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pages 102–109. Morgan Kaufmann, San Francisco, 1994.

    Google Scholar 

  4. F. B. Christiansen and M. W. Feldman. Algorithms, genetics and populations: the schemata theorem revisited. Complexity, 3:57–64, 1998.

    Article  MathSciNet  Google Scholar 

  5. M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization. MacGraw-Hill, New York, 1999.

    Google Scholar 

  6. R. Feistel and W. Ebeling. Evolution of Complex Systems. Self-Organization Entropy and Development. Kluwer, Dordrecht, 1989.

    Google Scholar 

  7. B. J. Frey. Graphical Models for Machine Learning and Digital Communication. MIT Press, Cambridge, 1998.

    Google Scholar 

  8. H. Geiringer. On the probability theory of linkage in Mendelian heredity. Annals of Math. Stat., 15:25–57, 1944.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA, 1989.

    MATH  Google Scholar 

  10. G. Harik. Linkage learning via probabilistic modeling in the ecga. Technical Report IlliGal 99010, University of Illinois, Urbana-Champaign, 1999.

    Google Scholar 

  11. J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge, 1998.

    Book  MATH  Google Scholar 

  12. J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI, 1975/1992.

    Google Scholar 

  13. M. I. Jordan. Learning in Graphical Models. MIT Press, Cambridge, 1999.

    Google Scholar 

  14. M. Mitchell, J. H. Holland, and S. Forrest. When will a genetic algorithm outperform hill climbing? Advances in Neural Information Processing Systems, 6:51–58, 1994.

    Google Scholar 

  15. H. Mühlenbein and T. Mahnig. Convergence theory and applications of the factorized distribution algorithm. Journal of Computing and Information Technology, 7:19–32, 1999.

    Google Scholar 

  16. H. Mühlenbein and T. Mahnig. FDA — A scalable evolutionary algorithm for the optimization of additively decomposed functions. Evolutionary Computation, 7(4):353–376, 1999.

    Article  Google Scholar 

  17. H. Mühlenbein. Evolution in time and space — the parallel genetic algorithm. In G. Rawlins, editor, Foundations of Genetic Algorithms, pages 316–337. Morgan Kaufmann, San Francisco, 1991.

    Google Scholar 

  18. H. Mühlenbein. The equation for the response to selection and its use for prediction. Evolutionary Computation, 5(3):303–346, 1997.

    Article  Google Scholar 

  19. H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer. Evolution algorithms in combinatorial optimization. Parallel Computing, 7:65–88, 1988.

    Article  MATH  Google Scholar 

  20. H. Mühlenbein, T. Mahnig, and A. Rodriguez Ochoa. Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics, 5:215–247, 1999.

    Article  MATH  Google Scholar 

  21. H. Mühlenbein and D. Schlierkamp-Voosen. The science of breeding and its application to the breeder genetic algorithm. Evolutionary Computation, 1:335–360, 1994.

    Article  Google Scholar 

  22. H. Mühlenbein and H.-M. Voigt. Gene pool recombination in genetic algorithms. In J. P. Kelly and I. H. Osman, editors, Metaheuristics: Theory and Applications, pages 53–62. Kluwer Academic, Norwell, 1996.

    Google Scholar 

  23. T. Nagylaki. Introduction to Theoretical Population Genetics. Biomathematics, Vol. 21. Springer-Verlag, Berlin Heidelberg New York, 1992.

    Book  Google Scholar 

  24. M. Pelikan, D. E. Goldberg, and E. Cantu-Paz. BOA: The Bayesian optimization algorithm. Technical Report IlliGal 99003, University of Illinois, Urbana-Champaign, 1999.

    Google Scholar 

  25. M. Peschel and W. Mende. Predator-Prey-Model: Do We Live in a Volterra World? Akademie-Verlag, Berlin, 1986.

    MATH  Google Scholar 

  26. A. Prügel-Bennet and J. L. Shapiro. An analysis of a genetic algorithm for simple random Ising systems. Physica D, 104:75–114, 1997.

    Article  MathSciNet  Google Scholar 

  27. L. M. Rattray and J. L. Shapiro. Cumulant dynamics of a population under multiplicative selection, mutation and drift. Theoretical Population Biology. To be published, 1999.

    Google Scholar 

  28. G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 7:461–464, 1978.

    Article  Google Scholar 

  29. V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

    MATH  Google Scholar 

  30. H.-M. Voigt. Evolution and Optimization. Akademie-Verlag, Berlin, 1989.

    MATH  Google Scholar 

  31. M. Vose. The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge, 1999.

    MATH  Google Scholar 

  32. S. Wright. Random drift and the shifting balance theory of evolution. In K. Kojima, editor, Mathematical Topics in Population Genetics. Springer-Verlag, Berlin Heidelberg New York, 1970.

    Google Scholar 

  33. Byoung-Tak Zhang, P. Ohm, and H. Mühlenbein. Evolutionary induction of sparse neural trees. Evolutionary Computation, 5:213–236, 1997.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mühlenbein, H., Mahnig, T. (2001). Evolutionary Algorithms: From Recombination to Search Distributions. In: Kallel, L., Naudts, B., Rogers, A. (eds) Theoretical Aspects of Evolutionary Computing. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04448-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04448-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08676-2

  • Online ISBN: 978-3-662-04448-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics