Skip to main content

Genetic Algorithms in Time-Dependent Environments

  • Chapter

Part of the book series: Natural Computing Series ((NCS))

Abstract

The influence of time-dependent fitnesses on the infinite population dynamics of simple genetic algorithms (GAs) without crossover is analyzed. Based on general arguments, a schematic phase diagram is constructed that allows one to characterize the asymptotic states in dependence on the mutation rate and the time scale of changes. Furthermore, the notion of regular changes is raised for which the population can be shown to converge towards a generalized quasispecies. Based on this, error thresholds and an optimal mutation rate are approximately calculated for a generational GA with a moving needle-inthe-haystack landscape. The phase diagram thus found is fully consistent with our general considerations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Baake and W. Gabriel. Biological evolution through mutation, selection, and drift: an introductory review. Ann. Rev. Comp. Phys., 7:203–264, 2000.

    Google Scholar 

  2. T. Bäck, U. Hammel and H.-P. Schwefel. Evolutionary computation: comments on the history and current state. IEEE Transactions on Evolutionary Computation, 1(1):3—17, 1997.

    Article  Google Scholar 

  3. T. Bäck, D. B. Fogel and Z. Michalewicz, editors. Handbook of Evolutionary Computation. IOP Publishing, Bristol, 1997.

    MATH  Google Scholar 

  4. J. Branke. Evolutionary algorithms for dynamic optimization problems, a survey. Technical Report 387, AIFB University Karlsruhe, 1999.

    Google Scholar 

  5. J. Branke, M. Cutaia and H. Dold. Reducing genetic drift in steady state evolutionary algorithms. In W. Banzhaf et al., editors, Proceedings of GECCO1999, pages 68–74. Morgan Kaufmann, San Francisco, 1999.

    Google Scholar 

  6. K. DeJong and J. Sarma. Generation gaps revisited. In L. D. Whitley, editor, Foundations of Genetic Algorithms2, pages 19–28. Morgan Kaufmann, San Francisco, 1993.

    Google Scholar 

  7. M. Eigen. Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften, 58:465–523, 1971.

    Article  Google Scholar 

  8. M. Eigen and P. Schuster. The Hypercycle — a Principle of Natural Self-Organization. Springer-Verlag, Berlin Heidelberg New York, 1979.

    Google Scholar 

  9. M. Eigen, J. McCaskill and P. Schuster. The molecular quasispecies. Adv. Chem. Phys., 75:149–263, 1989.

    Article  Google Scholar 

  10. M. Nilsson and N. Snoad. Error thresholds on dynamic fitness-landscapes. Working Paper 99–04–030, Santa Fe Institute, 1999.

    Google Scholar 

  11. A. Rogers and A. Prügel-Bennett. Modeling the dynamics of a steady state genetic algorithm. In W. Banzhaf and C. Reeves, editors, Foundations of Genetic Algorithms5, pages 57–68. Morgan Kaufmann, San Francisco, 1998.

    Google Scholar 

  12. J. E. Rowe. Finding attractors for periodic fitness functions. In W. Banzhaf et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO1999, pages 557–563. Morgan Kaufmann, San Francisco, 1999.

    Google Scholar 

  13. J. E. Rowe. The dynamical systems model of the simple genetic algorithm. This volume, pages 31–57.

    Google Scholar 

  14. J. E. Rowe. Cyclic attractors and quasispecies adaptability. This volume, pages 251— 259.

    Google Scholar 

  15. L. M. Schmitt, C. L. Nehaniv and R. H. Fujii. Linear analysis of genetic algorithms. Theoretical Computer Science, 200(1–2):101–134, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. van Nimwegen, J. P. Crutchfield and M. Mitchell. Statistical dynamics of the Royal-Road genetic algorithms. Theoretical Computer Science, 229(1–2):41–102, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. D. Vose. The Simple Genetic Algorithm — Foundations and Theory. MIT Press, Cambridge, MA, 1999.

    MATH  Google Scholar 

  18. C. O. Wilke, C. Ronnewinkel and T. Martinetz. Molecular evolution in timedependent environments. In D. Floreano, J.-D. Nicoud and F. Mondada, editors, Proceedings of the European Conference on Artificial Life1999, pages 417–421. Springer-Verlag, Berlin Heidelberg New York, 1999.

    Google Scholar 

  19. C. O. Wilke and C. Ronnewinkel. Dynamic fitness landscapes in the quasispecies model. Physics Reports, Elsevier, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ronnewinkel, C., Wilke, C.O., Martinetz, T. (2001). Genetic Algorithms in Time-Dependent Environments. In: Kallel, L., Naudts, B., Rogers, A. (eds) Theoretical Aspects of Evolutionary Computing. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04448-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04448-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08676-2

  • Online ISBN: 978-3-662-04448-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics