Skip to main content

Mechanisms of Motor Neuron Death in ALS

  • Conference paper

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal disease in which degeneration of upper and lower motor neurons leads to progressive muscle weakness. The most common form of adult motor neuron disease in humans, ALS typically initiates in middle to late life, leading to paralysis and death within three to five years. The disease usually begins asymmetrically in one limb, most commonly the leg, and then appears to spread to involve contiguous groups of motor neurons. Approximately 10% of ALS cases are inherited in an autosomal dominant fashion. Many affected neurons in ALS patients show cytoskeletal pathology in the form of neurofilament accumulations, both within the cell bodies and in proximal axons (Carpenter 1968; Chou and Fakadej 1971; Hirano et al. 1984a, b). Motor neuron loss is also accompanied by reactive gliosis (Leigh et al. 1991), ubiquitin-positive inclusions (Leigh et al. 1991) and apparent fragmentation of the Golgi (Gonatas et al. 1992). A landmark discovery in deciphering the mechanism of the disease came from the identification of the mutations in the gene encoding cytoplasmic superoxide dismutase (SOD1) that underlie about 20% of the instances of inherited disease (Rosen et al. 1993; Siddique and Deng 1996; Andersen et al. 2000).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K, Pan LH, Watanabe M, Kato T, Itoyama Y (1995) Induction of nitrotyrosine-like immunoreactivity in the lower motor neurons of amyotrophic lateral sclerosis. Neurosci Lett 199: 152–154

    Article  PubMed  CAS  Google Scholar 

  • Abe K, Pan LH, Watanabe M, Kato T, Itoyama Y (1997) Upregulation of protein-tyrosine nitration in the anterior horn cells of amyotrophic lateral sclerosis. Neurol Res 19: 124–128

    PubMed  CAS  Google Scholar 

  • Al-Chalabi A, Andersen PM, Nilsson P, Chioza B, Andersson JL, Russ C, Shaw CE, Powell JF, Leigh PN (1999) Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Human Mol Genet 8: 157–164

    Article  CAS  Google Scholar 

  • Andersen PM, Morita M, Brown RH Jr. (2000) Genetics of amyotrophic lateral sclerosis: an overview, pp. 223–250. In: Brown RH Jr., Meininger V, Swash M (eds) Amyotrophic lateral sclerosis. Martin Dunitz, London

    Google Scholar 

  • Beckman JS, Carson M, Smith CD, Koppenol WH (1993) ALS, SOD and peroxynitrite. Nature 364: 584

    Google Scholar 

  • Beal MFR, Ferrante J, Browne SE, Matthews RT, Kowall NW, Brown RH Jr (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 42: 644–654

    Article  PubMed  CAS  Google Scholar 

  • Borchelt DR, Lee MK, Slunt HS, Guarnieri M, Xu ZS, Wong PC, Brown RH Jr, Price DL, Sisodia SS, Cleveland DW (1994) Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci USA 91: 8292–8296

    Article  PubMed  CAS  Google Scholar 

  • Borchelt DR, Guarnieri M, Wong PC, Lee MK, Slunt HS, Xu ZS, Sisodia SS, Price DL, Cleveland DW (1995) Superoxide dismutase 1 subunits with mutations linked to familial amyotrophic lateral sclerosis do not affect wild-type subunit function. J Biol Chem 270: 3234–3238

    Article  PubMed  CAS  Google Scholar 

  • Bowling AC, Schulz JB, Brown RH Jr, Beal MF (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 61: 2322–2325

    Article  PubMed  CAS  Google Scholar 

  • Bruening W, Roy J, Giasson B, Figlewicz DA, Mushynski WE, Durham HD (1999) Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J Neurochem 72: 693–699

    Article  PubMed  CAS  Google Scholar 

  • Bruijn LI, Beal MF, Becher MW, Schulz JB, Wong PC, Price DL, Cleveland DW (1997a) Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. Proc Natl Acad Sci USA 94: 7606–7611

    Article  PubMed  CAS  Google Scholar 

  • Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, Rothstein JD, Borchelt DR, Price DL, Cleveland DW (1997b) ALS-linked SOD 1 mutant SOD 1G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD 1-containing inclusions. Neuron 18: 327–338

    Article  PubMed  CAS  Google Scholar 

  • Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD I. Science 281: 1851–1854

    Article  PubMed  CAS  Google Scholar 

  • Cajal SR (1903) Embryogenesis of neurofibrils. Trab Lab Invest Biol Univ Madrid 2: 219–225

    Google Scholar 

  • Carpenter S (1968) Proximal axonal enlargement in motor neuron disease. Neurology 18: 841–851

    Article  PubMed  CAS  Google Scholar 

  • Ching GY, Liem RK (1993) Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J Cell Biol 122: 1323–1335

    Article  PubMed  CAS  Google Scholar 

  • Chou SM, Fakadej AV (1971) Ultrastructure of chromatolytic motor neurons and anterior spinal roots in a case of Werdnig-Hoffman disease. J Neuropathol Exp Neurol 30: 42–55

    Article  Google Scholar 

  • Chou SM, Wang HS, Taniguchi A (1996) Role of SOD-1 and nitric oxide/cyclic GMP cascade on neuro-filament aggregation in ALS/MND. J Neurol Sci 139 (Suppl): 16–26

    Article  PubMed  Google Scholar 

  • Cleveland DW (1999) From Charcot to SOD 1: mechanisms of selective motor neuron death in ALS. Neuron 24: 515–520

    Article  PubMed  CAS  Google Scholar 

  • Cleveland DW, Laing N, Hurse PV, Brown RH (1995) Toxic mutants in Charcot’s sclerosis. Nature 378: 342–343

    Article  PubMed  CAS  Google Scholar 

  • Collard JF, Cote F, Julien JP (1995) Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375: 61–64

    Article  PubMed  CAS  Google Scholar 

  • Cork LC, Griffin JW, Choy C, Padula CA, Price DL (1982) Pathology of motor neurons in accelerated hereditary canine spinal muscular atrophy. Lab Invest 46: 89–99

    PubMed  CAS  Google Scholar 

  • Cork LC, Troncoso JC, Klavano GG, Johnson ES, Sternberger LA, Sternberger NH, Price DL (1988) Neurofilamentous abnormalities in motor neurons in spontaneously occurring animal disorders. J Neuropathol Exp Neurol 47: 420–431

    Article  PubMed  CAS  Google Scholar 

  • Corson LB, Strain JJ, Culotta VC, Cleveland DW (1998) Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants. Proc Natl Acad Sci USA 95: 6361–6366

    Article  PubMed  CAS  Google Scholar 

  • Cote F, Collard JF, Julien JP (1993) Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 73: 35–46

    Article  PubMed  CAS  Google Scholar 

  • Couillard-Despres S, Zhu Q, Wong PC, Price DL, Cleveland DW, Julien JP (1998) Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant superoxide dismutase. Proc Natl Acad Sci USA 95: 9626–9630

    Article  PubMed  CAS  Google Scholar 

  • Crow JP, Sampson JB, Zhuang Y, Thompson JA, Beckman JS (1997a) Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J Neurochem 69: 1936–1944

    Article  PubMed  CAS  Google Scholar 

  • Crow JP, Ye YZ, Strong M, Kirk M, Barnes S, Beckman JS (1997b) Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament L. J Neurochem 69: 1945–1953

    Article  PubMed  CAS  Google Scholar 

  • Culotta VC, Klomp LW, Strain J, Casareno RL, Krems B, Gitlin JD (1997) The copper chaperone for superoxide dismutase. J Biol Chem 272: 23469–23472

    Article  PubMed  CAS  Google Scholar 

  • Dal Canto MC, Gurney ME (1994) Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol 145: 1271–1279

    Google Scholar 

  • Dal Canto MC, Gurney ME (1995) Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis ( FALS ). Brain Res 676: 25–40

    Google Scholar 

  • Dal Canto MC, Gurney ME (1997) A low expressor line of transgenic mice carrying a mutant human Cu,Zn superoxide dismutase (SOD 1) gene develops pathological changes that most closely resemble those in human amyotrophic lateral sclerosis. Acta Neuropathol 93: 537–550

    Article  Google Scholar 

  • Deng HX, Hentati A, Tainer JA, Igbal Z, Cayabyab A, Hung WY, Getzoff ED, Hu P, Herzfeldt B, Roos RP, Warner C, Siddique T (1993) Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 261: 1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Durham HD, Roy J, Dong L, Figlewicz DA (1997) Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J Neuropathol Exp Neurol 56: 523–530

    Article  PubMed  CAS  Google Scholar 

  • Estevez AG, Crow JP, Sampson JB, Reiter C, Zhuang Y, Richardson GJ, Tarpey MM, Barbeito L, Beckman JS (1999) Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286: 2498–2500

    Article  PubMed  CAS  Google Scholar 

  • Facchinetti F, Sasaki M, Cutting FB, Zhai P, MacDonald JE, Reif D, Beal MF, Huang PL, Dawson TM, Gurney ME, Dawson VL (1999) Lack of involvement of neuronal nitric oxide synthase in the pathogenesis of a transgenic mouse model of familial amyotrophic lateral sclerosis. Neuroscience 90: 1483–1492

    Article  PubMed  CAS  Google Scholar 

  • Ferrante RJ, Shinobu LA, Schulz JB, Matthews RT, Thomas CE, Kowall NW, Gurney ME, Beal MF (1997) Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann Neurol 42: 326–334

    Article  PubMed  CAS  Google Scholar 

  • Figlewicz DA, Krizus A, Martinoli MG, Meininger V, Dib M, Rouleau GA, Julien JP (1994) Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Human Mol Genet 3: 1757–1761

    Article  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64: 97–112

    Article  PubMed  CAS  Google Scholar 

  • Gonatas NK, Stieber A, Mourelatos Z, Chen Y, Gonatas JO, Appel SH, Hays AP, Hickey WF, Hauw JJ (1992) Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis. Am J Pathol 140: 731–737

    PubMed  CAS  Google Scholar 

  • Goto JJ, Zhu H, Sanchez RJ, Nersissian A, Gralla EB, Valentine JS, Cabelli DE (2000) Loss of in vitro metal ion binding specificity in mutant copper-zinc superoxide dismutases associated with familial amyotrophic lateral sclerosis. J Biol Chem 275: 1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264: 1772–1775

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344: 721–724

    Article  PubMed  CAS  Google Scholar 

  • Hirano A (1991) Cytopathology of amyotrophic lateral sclerosis. In: Rowland LP (ed) Advances in neurology. Volume 56. Amyotrophic lateral sclerosis and other motor neuron diseases. New York; Raven Press, pp 91–101

    Google Scholar 

  • Hirano A, Donnenfeld H, Sasaki S, Nakano I (1984a) Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43: 461–470

    Article  PubMed  CAS  Google Scholar 

  • Hirano A, Nakano I, Kurland LT, Mulder DW, Holley PW, Saccomanno G (1984b) Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43: 471–480

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Shimono M, Watanabe Y, Nakashima K, Takahashi K, Ohama E (1996) Familial amyotrophic lateral sclerosis with a two base pair deletion in superoxide dismutase 1 gene: multisystem degeneration with intracytoplasmic hyaline inclusions in astrocytes. J Neuropathol Exp Neurol 55. 1089–1101

    PubMed  CAS  Google Scholar 

  • Kato S, Hayashi H, Nakashima K, Nanba E, Kato M, Hirano A, Nakano I, Asayama K, Ohama E (1997) Pathological characterization of astrocytic hyaline inclusions in familial amyotrophic lateral sclerosis. Am J Pathol 151: 611–620

    PubMed  CAS  Google Scholar 

  • Lee MK, Xu Z, Wong PC, Cleveland DW (1993) Neurofilaments are obligate heteropolymers in vivo. J Cell Biol 122: 1337–1350

    Article  PubMed  CAS  Google Scholar 

  • Lee MK, Marszalek JR, Cleveland DW (1994) A mutant neurofilament subunit causes massive, selective motor neuron death: Implications for the pathogenesis of human motor neuron disease. Neuron 13: 975–988

    Google Scholar 

  • Leigh PN, Whitwell H, Garofalo O, Buller J, Swash M, Martin JE, Gallo JM, Weller RO, Anderton BH (1991) Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. Brain 114: 775–788

    Google Scholar 

  • Liu XF, Elashvili I, Gralla EB, Valentine JS, Lapinskas P, Culotta VC (1992) Yeast lacking superoxide dismutase. Isolation of genetic suppressors. J Biol Chem 267: 18298–18302

    Google Scholar 

  • Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95: 1446–1456

    Article  PubMed  CAS  Google Scholar 

  • Marszalek JR, Williamson TL, Lee MK, Xu Z-S, Crawford TO, Hoffman PN, Cleveland DW (1996) Neurofilament subunit NF-H modulates axonal diameter by affecting the rate or neurofilament transport. J Cell Biol 135: 711–724

    Article  PubMed  CAS  Google Scholar 

  • McNamara JO, Fridovich I (1993) Human genetics. Did radicals strike Lou Gehrig? Nature 362: 20–21

    Article  PubMed  CAS  Google Scholar 

  • Mersiyanova IV, Perepelov AV, Polyakov AV, Sitnikov VF, Dadali EL, Oparin RB, Petrin AN, Evgrafov OV (2000) A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am J Human Genet 67: 37–46

    Article  CAS  Google Scholar 

  • Orrell R, de Belleroche J, Marklund S, Bowe F, Hallewell R (1995) A novel SOD mutant and ALS. Nature 374: 504–505

    Article  PubMed  CAS  Google Scholar 

  • Peled-Kamar M, Lotem J, Wirguin I, Weiner L, Hermalin A, Groner Y (1997) Oxidative stress mediates impairment of muscle function in transgenic mice with elevated level of wild-type Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 94: 3883–3887

    Article  PubMed  CAS  Google Scholar 

  • Reaume AB, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH, Scott RW, Snider WD (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genet 13: 43–47

    Article  PubMed  CAS  Google Scholar 

  • Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW (1995) Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 92: 689–693

    Article  PubMed  CAS  Google Scholar 

  • Robberecht W, Sapp P, Viaene MK; Rosen D, McKenna-Yasek D, Haines J, Horvitz R, Theys P, Brown R (1994) Cu/Zn superoxide dismutase activity in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 62: 384–387

    Article  PubMed  CAS  Google Scholar 

  • Rooke K, Figlewicz DA, Han F, Rouleau GA (1996) Analysis of the KSP repeat of the neurofilament heavy subunit in familial amyotrophic lateral sclerosis. Ann Neurol 46: 789–790

    CAS  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX, Brown R (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotropic lateral sclerosis. Nature 362: 59–62

    Article  PubMed  CAS  Google Scholar 

  • Rouleau GA, Clark AW, Rooke K, Pramatarova A, Krizus A, Suchowersky O, Julien J-P, Figlewicz D (1996) SOD I mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann Neurol 39: 128–131

    Article  PubMed  CAS  Google Scholar 

  • Schochet SS, Hardman JM, Ladewig PP, Earle KM (1969) Intraneuronal conglomerates in sporadic motor neuron disease. A light and electron microscopic study. Arch Neurol 20: 548–553

    Google Scholar 

  • Shefner JM, Reaume AG, Flood DG, Scott RW, Kowall NW, Ferrante RJ, Siwek DF, Upton-Rice M, Brown RH Jr (1999) Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology 53: 1239–1246

    Article  PubMed  CAS  Google Scholar 

  • Shibata N, Hirano A, Kobayashi M, Siddique T, Deng H-X, Hung W-Y, Kato T, Asayama K (1996) Intense superoxide dismutase-1 immunoreactivity in intracytoplasmic hyaline inclusions of familial amyotrophic lateral sclerosis with posterior column involvement. J Neuropathol Exp Neurol 55: 481–490

    Article  PubMed  CAS  Google Scholar 

  • Siddique T, Deng HX (1996) Genetics of amyotrophic lateral sclerosis. Human Mol Genet 5 (Spec No): 1465–70

    CAS  Google Scholar 

  • Singh RJ, Karoui H, Gunther MR, Beckman JS, Mason RP, Kalyanaraman B (1998) Reexamination of the mechanism of hydroxyl radical adducts formed from the reaction between familial amyotrophic lateral sclerosis-associated Cu,Zn superoxide dismutase mutants and H2O2. Proc Natl Acad Sci USA 95: 6675–6680

    Article  PubMed  CAS  Google Scholar 

  • Tomkins J, Usher P, Slade JY, Ince PG, Curtis A, Bushby K, Shaw PJ (1998) Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis ( ALS ). Neuroreport 9: 3967–3970

    Google Scholar 

  • Troy CM, Derossi S, Prochiantz A, Greene LA, Shelanski ML (1996) Down-regulation of SOD 1 leads to cell death by the NO-peroxynitrite pathway. J Neurosci 16: 253–261

    PubMed  CAS  Google Scholar 

  • Tu PH, Raju P, Robinson KA, Gurney ME, Trojanowski JQ, Lee VM-Y (1996) Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci USA 93: 3155–3160

    Article  PubMed  CAS  Google Scholar 

  • Vechio JD, Bruijn LI, Xu Z, Brown RH Jr, Cleveland DW (1996) Sequence variants in human neurofilament proteins: absence of linkage to familial amyotrophic lateral sclerosis. Ann Neurol 40: 603–610

    Article  PubMed  CAS  Google Scholar 

  • Warita H, Itoyama Y, Abe K (1999) Selective impairment of fast anterograde axonal transport in the peripheral nerves of asymptomatic transgenic mice with a G93A mutant SOD 1 gene. Brain Res 819: 120–131

    Article  PubMed  CAS  Google Scholar 

  • Wiedau-Pazos M, Goto JJ, Rabizadeh S, Gralla EB, Roe JA, Lee MK, Valentine JS, Bredesen DE (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271: 515–518

    Article  PubMed  CAS  Google Scholar 

  • Wiley CA, Love S, Skoglund RR, Lampert PW (1987) Infantile neurodegenerative disease with neuronal accumulation of phosphorylated neurofilaments. Acta Neuropathol (Berl) 72: 369–376

    Article  CAS  Google Scholar 

  • Williamson TL, Cleveland DW (1999) Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nature Neurosci 2. 50–56

    Article  PubMed  CAS  Google Scholar 

  • Williamson-TL, Bruijn LI, Zhu Q, Anderson KL, Anderson SD, Julien JP, Cleveland DW (1998) Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. Proc Natl Acad Sci USA 95: 9631–9636

    Google Scholar 

  • Williamson TL, Corson LB, Huang A, Burlingame J, Liu L, Bruijn I, Cleveland DW (2000) Toxicity of ALS-linked SODI mutants. Science 288: 399–400

    Article  PubMed  CAS  Google Scholar 

  • Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14: 1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB, Culotta VC, Price DL, Rothstein J, Gitlin JD (2000) Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/ Zn superoxide dismutase. Proc Natl Acad Sci USA 97: 2886–2891

    Article  PubMed  CAS  Google Scholar 

  • Yu BP (1994) Cellular defenses against damage from reaactive oxygen species. Physiol Rev 74: 138–162

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Williamson, T.L., Cleveland, D.W. (2001). Mechanisms of Motor Neuron Death in ALS. In: Beyreuther, K., Christen, Y., Masters, C.L. (eds) Neurodegenerative Disorders: Loss of Function Through Gain of Function. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04399-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04399-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07448-6

  • Online ISBN: 978-3-662-04399-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics