Scattered Data Modelling Using Radial Basis Functions

  • Armin Iske
Part of the Mathematics and Visualization book series (MATHVISUAL)


Radial basis functions provide powerful meshless methods for multivariate interpolation from scattered data in arbitrary space dimension. This tutorial first explains the basic features of radial basis function interpolation, including its optimality properties and available error estimates, before critical aspects concerning its stability are discussed. The remainder of this contribution is then devoted to related techniques in scattered data modelling other than plain interpolation. To this end, least squares approximation and multiresolution techniques are explained, and recent progress concerning scattered data filtering is reported.


Radial Basis Function Voronoi Diagram Delaunay Triangulation Scattered Data Thin Plate Spline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ball. Eigenvalues of Euclidean distance matrices. J. Approx. Theory 68, 1992, 74–82.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    K. Ball, N. Sivakumar, and J. D. Ward. On the sensitivity of radial basis interpolation to minimal distance separation. J. Approx. Theory 8, 1992, 401–426.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Å. Bjørck and G. H. Golub. Iterative refinement of linear least squares solutions by Householder transformation. BIT 7, 1967, 322–337.CrossRefGoogle Scholar
  4. 4.
    M. D. Buhmann. Radial basis functions. Acta Numerica, 2000, 1–38.Google Scholar
  5. 5.
    Y. D. Burago and V. A. Zalgaller. Geometric Inequalities. Springer, Berlin, 1988.zbMATHGoogle Scholar
  6. 6.
    J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups. Springer, New York, 1993.zbMATHCrossRefGoogle Scholar
  7. 7.
    J. Duchon. Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. R.A.I.R.O. Analyse Numériques 10, 1976, 5–12.MathSciNetGoogle Scholar
  8. 8.
    J. Duchon. Splines minimizing rotation-invariant semi-nor ms in Sobolev spaces. Constructive Theory of Functions of Several Variables, W. Schempp and K. Zeller (eds.), Springer, Berlin, 1977, 85–100.CrossRefGoogle Scholar
  9. 9.
    J. Duchon. Sur l’erreur d’interpolation des fonctions de plusieurs variables par les D m-splines. R.A.I.R.O. Analyse Numériques 12, 1978, 325–334.MathSciNetzbMATHGoogle Scholar
  10. 10.
    N. Dyn. Interpolation of scattered data by radial functions. Topics in Multivariate Approximation, C. K. Chui, L. L. Schumaker, and F. I. Utreras (eds.), Academic Press, New York, 1987, 47–61.Google Scholar
  11. 11.
    N. Dyn. Interpolation and approximation by radial and related functions. Approximation Theory VI, Vol. 1, C. K. Chui, L. L. Schumaker, and J. D. Ward (eds.), Academic Press, New York, 1989, 211–234.Google Scholar
  12. 12.
    M. S. Floater and A. Iske. Multistep scattered data interpolation using compactly supported radial basis functions. J. Comput. Appl. Math. 73, 1996, 65–78.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    M.S. Floater and A. Iske. Thinning algorithms for scattered data interpolation. BIT 38, 1998, 705–720.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    C. Gotsman, S. Gumhold, and L. Kobbelt. Simplification and Compression of 3D Meshes. This volume.Google Scholar
  15. 15.
    K. Guo, S. Hu, and X. Sun. Conditionally positive definite functions and Laplace-Stieltjes integrals. J. Approx. Theory 74, 1993, 249–265.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    R. L. Hardy. Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76, 1971, 1905–1915.CrossRefGoogle Scholar
  17. 17.
    D.S. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS Publishing Company, Boston, 1997.Google Scholar
  18. 18.
    A. Iske. Charakterisierung bedingt positiv deûniter Funktionen für multivariate Interpolationsmethoden mit radialen Basisfunktionen. Dissertation, Universität Göttingen, 1994.Google Scholar
  19. 19.
    A. Iske. Characterization of function spaces associated with conditionally positive definite functions. Mathematical Methods for Curves and Surfaces, M. Daehlen, T. Lyche, and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 1995, 265–270.Google Scholar
  20. 20.
    A. Iske. Reconstruction of functions from generalized Hermite-Birkhoff data. Approximation Theory VIII, Vol. 1: Approximation and Interpolation, C. K. Chui and L. L. Schumaker (eds.), World Scientific, Singapore, 1995, 257–264.Google Scholar
  21. 21.
    A. Iske. Hierarchical scattered data filtering for multilevel interpolation schemes. Mathematical Methods for Curves and Surfaces: Oslo 2000, T. Lyche and L. L. Schumaker (eds), Vanderbilt University Press, Nashville, 2001, 211–220.Google Scholar
  22. 22.
    A. Iske. Progressive scattered data filtering. Preprint, Technische Universität München, 2002.Google Scholar
  23. 23.
    A. Iske. Optimal distribution of centers for radial basis function methods. Preprint, Technische Universität München, 2000.Google Scholar
  24. 24.
    H. Jung. Über die kleinste Kugel, die eine räumliche Figur einschließt. J. Reine Angew. Math. 123, 1901, 241–257.zbMATHGoogle Scholar
  25. 25.
    C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs, N.J., 1974.zbMATHGoogle Scholar
  26. 26.
    W. R. Madych and S. A. Nelson. Multivariate interpolation: a variational theory. Manuscript, 1983.Google Scholar
  27. 27.
    W. R. Madych and S. A. Nelson. Multivariate interpolation and conditionally positive definite functions. Approx. Theory Appl. 4, 1988, 77–89.MathSciNetzbMATHGoogle Scholar
  28. 28.
    W. R. Madych and S. A. Nelson. Multivariate interpolation and conditionally positive definite functions II. Math. Comp. 54, 1990, 211–230.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    J. Meinguet. Multivariate interpolation at arbitrary points made simple. Z. Angew. Math. Phys. 30, 1979, 292–304.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    J. Meinguet. An intrinsic approach to multivariate spline interpolation at arbitrary points. Polynomial and Spline Approximations, N. B. Sahney (ed.), Reidel, Dordrecht, 1979, 163–190.Google Scholar
  31. 31.
    J. Meinguet. Surface spline interpolation: basic theory and computational aspects. Approximation Theory and Spline Functions, S. P. Singh, J. H. Bury, and B. Watson (eds.), Reidel, Dordrecht, 1984, 127–142.CrossRefGoogle Scholar
  32. 32.
    C. A. Micchelli. Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2, 1986, 11–22.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    C A. Micchelli, T. J. Rivlin, and S. Winograd. Optimal recovery of smooth functions. Numer. Math. 260, 1976, 191–200.MathSciNetCrossRefGoogle Scholar
  34. 34.
    F. J. Narcowich and J. D. Ward. Norms of inverses and conditions numbers for matrices associated with scattered data. J. Approx. Theory 64, 1991, 69–94.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    F. J. Narcowich and J. D. Ward. Norm estimates for the inverses of a general class of scattered-data radial-function interpolation matrices. J. Approx. Theory 69, 1992, 84–109.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    M. J. D. Powell. The theory of radial basis function approximation in 1990. Advances in Numerical Analysis II: Wavelets, Subdivision, and Radial Basis Functions, W. A. Light (ed.), Clarendon Press, Oxford, 1992, 105–210.Google Scholar
  37. 37.
    F. P. Preparata and M. I. Shamos Computational Geometry, 2nd edition. Springer, New York, 1988.Google Scholar
  38. 38.
    R. A. Rankin. The closest packing of spherical caps in n dimensions. Proc. Glasgow Math. Assoc. 2, 1955, 139–144.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    R. Schaback. Creating surfaces from scattered data using radial basis functions. Mathematical Methods for Curves and Surfaces, M. Daehlen, T. Lyche, and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 1995, 477–496.Google Scholar
  40. 40.
    R. Schaback. Error estimates and condition numbers for radial basis function interpolation. Advances in Comp. Math. 3, 1995, 251–264.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    R. Schaback. Multivariate interpolation and approximation by translates of a basis function. Approximation Theory VIII, Vol. 1: Approximation and Interpolation, C. K. Chui and L. L. Schumaker (eds.), World Scientific, Singapore, 1995, 491–514.Google Scholar
  42. 42.
    R. Schaback. Stability of radial basis function interpolants. Preprint, Universität Göttingen, 2001.Google Scholar
  43. 43.
    R. Schaback and H. Wendland. Inverse and saturation theorems for radial basis function interpolation. Math. Comp. 71, 2002, 669–681.MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    R. Schaback and H. Wendland. Characterization and construction of radial basis functions. Multivariate Approximation and Applications, N. Dyn, D. Leviatan, D. Levin, and A. Pinkus (eds.), Cambridge University Press, Cambridge, 2001, 1–24.CrossRefGoogle Scholar
  45. 45.
    I. J. Schoenberg. Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44, 1938, 522–536.MathSciNetCrossRefGoogle Scholar
  46. 46.
    I. J. Schoenberg. Metric spaces and completely monotone functions. Math. Ann. 39, 1938, 811–841.MathSciNetCrossRefGoogle Scholar
  47. 47.
    H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Comp. Math. 4, 1995, 389–396.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Z. Wu. Multivariate compactly supported positive definite radial functions. Advances in Comp. Math. 4, 1995, 283–292.zbMATHCrossRefGoogle Scholar
  49. 49.
    Z. Wu and R. Schaback. Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13, 1993, 13–27.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    F. Zeilfelder. Scattered data fitting with bivariate splines. This volume.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Armin Iske
    • 1
  1. 1.Zentrum MathematikTechnische Universität MünchenMunichGermany

Personalised recommendations