Eigenanalysis and Artifacts of Subdivision Curves and Surfaces

  • Malcolm Sabin
Part of the Mathematics and Visualization book series (MATHVISUAL)


When refinement methods were first shown to be applicable to data which was not totally regular, an immediate question was ‘how does the limit surface behave around an extraordinary point?’. The technique of eigenanalysis was the answer then and is still the primary technique today.

An issue only now becoming seriously important with the wider use of refinement methods is whether the processes introduce artifacts into the limit surface not implied by the original data. Certainly some examples can be shown, where the artifacts are serious, and a major challenge for the immediate future is whether we can understand them well enough to tune our systems to avoid creating them, or, if not, at least to tell our users how to avoid problems when defining the data for a refinement surface.


Control Point Mark Point Subdivision Scheme Limit Curve Support Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Basic References and Eigenanalysis of Curves

  1. 1.
    W. Boehm. Inserting new knots into B-spline curves. Computer-Aided Design 12, 1980, 199–201.CrossRefGoogle Scholar
  2. 2.
    E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 1978, 350–355.CrossRefGoogle Scholar
  3. 3.
    G.M. Chaikin. An algorithm for high-speed curve generation. Comp. Graphics and Image Proc. 3, 1974, 346–349.CrossRefGoogle Scholar
  4. 4.
    E. Cohen, T. Lyche, and R. Riesenfeld. Discrete B-splines and subdivision techniques in computer aided design and computer graphics. Comp. Graphics and Image Proc. 14, 1980, 87–111.CrossRefGoogle Scholar
  5. 5.
    G. de Rham. Un peu de mathématique a propos d’une courbe plane. Elemente der Mathematik 2, 1947, 73–76, 89–97.Google Scholar
  6. 6.
    D. W. H. Doo. A subdivision algorithm for smoothing down irregular shaped polyhedrons. Proc. Interactive Techniques in Computer Aided Design. IEEE Bologna, 1978, 157–165.Google Scholar
  7. 7.
    D. W. H. Doo and M. A. Sabin. Analysis of the behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design 10, 1978, 356–360.CrossRefGoogle Scholar
  8. 8.
    A. R. Forrest. Notes of Chaikin’s algorithm. CGM74–1, University of East Anglia, 1974.Google Scholar
  9. 9.
    R. F. Riesenfeld. On Chaikin’s algorithm. IEEE Comp. Graph. Appl. 4, 1975, 304–310.Google Scholar
  10. 10.
    G. Deslauriers and S. Dubuc. Symmetric iterative interpolation processes. Con-str. Approx. 5, 1989, 49–68.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    S. Dubuc. Interpolation through an iterative scheme. J. Math. Anal. Appl. 114, 1986, 185–204.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    N. Dyn, D. Levin, and J. A. Gregory. A 4-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. Design 4, 1987, 257–268.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    N. Dyn, J. Gregory, and D. Levin. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. on Graphics 9, 1990, 160–169.CrossRefzbMATHGoogle Scholar
  14. 14.
    N. Dyn. Interpolatory subdivision schemes. This volume.Google Scholar
  15. 15.
    N. Dyn. Analysis of convergence and smoothness by the formalism of Laurent polynomials. This volume.Google Scholar
  16. 16.
    L. Kobbelt. Subdivision. SIGGRAPH 2000, 103–112.Google Scholar
  17. 17.
    C. T. Loop. Smooth Subdivision Surfaces based on Triangles. Master’s thesis, University of Utah, 1987.Google Scholar
  18. 18.
    J. Peters and U. Reif. The simplest subdivision scheme for smoothing polyhedra. ACM Trans. on Graphics 16, 1997, 420–431.CrossRefGoogle Scholar
  19. 19.
    H. Prautzsch and T. Gallagher. Is there a geometric variation diminishing property for B-spline or Bézier surfaces? Comput. Aided Geom. Design 9, 1992, 119–124.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    M. Sabin, ω-convergence, a criterion for linear approximation. Curves and Surfaces, P.-J. Laurent, A. Le Méhauté, and L. L. Schumaker (eds.), Academic Press, New York, 1991, 415–420SPI.Google Scholar
  21. 21.
    T. W. Sederberg, J. Zheng, D. Sewell, and M. Sabin. Non-uniform recursive subdivision surfaces. SIGGRAPH 1998, 387–394.Google Scholar
  22. 22.
    L. Velho and D. Zorin. 4–8 subdivision. Comput. Aided Geom. Design 18, 2001, 397–427.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    D. Zorin, P. Schröder, and W. Sweldens. Interpolating subdivision for meshes with arbitrary topology. SIGGRAPH 1996, 189–192.Google Scholar

Eigenanalysis of Surfaces

  1. 24.
    A. A. Ball and D. Storry. A matrix approach to the analysis of recursively generated B-splines. Computer-Aided Design 18, 1986, 437–442.CrossRefGoogle Scholar
  2. 25.
    A. A. Ball and D. Storry. Conditions for tangent plane continuity of recursively generated B-splines. ACM Trans. on Graphics 7, 1988, 83–102.CrossRefzbMATHGoogle Scholar
  3. 26.
    P. Davis. Circulant Matrices. John Wiley, New York, 1979.zbMATHGoogle Scholar
  4. 27.
    G. de Rham. collected works, pp. 89–97 and 690–727, 1947–1957. as reported by C. de Boor in Cutting corners always works. Comput. Aided Geom. Design 4, 1987, 125–132.Google Scholar
  5. 28.
    D. W. H. Doo and M. A. Sabin. Behaviour of recursive subdivision surfaces near extraordinary points. Computer-Aided Design 10, 1978, 356–360 (reprinted in Seminal Graphics, Wolfe (ed.), SIGGRAPH 1998).CrossRefGoogle Scholar
  6. 29.
    I. Guskov. Multivariate Subdivision Schemes and Divided Differences. Program for Applied and Computational Mathematics, Princeton University, Princeton NJ08544, 1998, available from Scholar
  7. 30.
    J. Peters and U. Reif. Analysis of algorithms generalizing B-spline subdivision. SIAM J. Numer. Anal. 35, 1998, 728–748.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 31.
    H. Prautzsch. Smoothness of subdivision surfaces at extraordinary points. Advances in Comp. Math. 9, 1998, 377–389.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 32.
    H. Prautzsch and G. Umlauf. A G2-subdivision algorithm. Geometric Modelling, G. Farin, H. Bieri, G. Brunnett, and T. deRose (eds.), Springer-Verlag, 1998, 217–224.CrossRefGoogle Scholar
  10. 33.
    H. Prautzsch and G. Umlauf. A G1 and a G2 subdivision scheme for triangular nets. To appear in J. of Shape Modelling.Google Scholar
  11. 34.
    U. Reif. A unified approach to subdivision algorithms near extraordinary points. Comput. Aided Geom. Design 12, 1995, 153–174.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 35.
    K. Qin and H. Wang. Eigenanalysis and continuity of non-uniform Doo-Sabin surfaces. Proc. Pacific Graphics 1999, 179–186, 324.Google Scholar
  13. 36.
    M. A. Sabin. Cubic recursive division with bounded curvature. Curves and Surfaces, P.-J. Laurent, A. Le Méhauté, and L. L. Schumaker (eds.), Academic Press, New York, 1991, 411–414.Google Scholar
  14. 37.
    M. A. Sabin. Subdivision of box-splines. This volume.Google Scholar
  15. 38.
    C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. University of Illinois Press, 1949.zbMATHGoogle Scholar
  16. 39.
    D. J. T. Storry. B-spline Surfaces over an Irregular Topology by Recursive Subdivision. PhD thesis, Loughborough University, 1985.Google Scholar
  17. 40.
    D. J. T. Storry and A. A. Ball. Design of an n-sided surface patch. Comput. Aided Geom. Design 6, 1989, 111–120.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Malcolm Sabin
    • 1
    • 2
  1. 1.Computer LaboratoryCambridge UniversityEngland
  2. 2.Numerical Geometry Ltd.UK

Personalised recommendations