Advertisement

Multiresolution Mesh Representation: Models and Data Structures

  • Leila De Floriani
  • Paola Magillo
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Multiresolution meshes are a common basis for building representations of a geometric shape at different levels of detail. The use of the term multiresolution depends on the remark that the accuracy (or, level of detail) of a mesh in approximating a shape is related to the mesh resolution, i.e., to the density (size and number) of its cells. A multiresolution mesh provides several alternative mesh-based approximations of a spatial object (e.g., a surface describing the boundary of a solid object, or the graph of a scalar field).

A multiresolution mesh is a collection of mesh fragments, describing usually small portions of a spatial object with different accuracies, plus suitable relations that allow selecting a subset of fragments (according to user-defined accuracy criteria), and combining them into a mesh covering the whole object, or an object part. Existing multiresolution models differ in the type of mesh fragments they consider and in the way they define relations among such fragments.

In this chapter, we introduce a framework for multiresolution meshes in order to analyze and compare existing models proposed in the literature on a common basis. We have identified two sets of basic queries on a multiresolution meshes, that we call selective refinement and spatial selection. We describe two approaches for answering such queries, and discuss the primitives involved in them, which must be efficiently supported by any data structure implementing a multiresolution mesh. We then describe and analyze data structures proposed in the literature for encoding multiresolution meshes.

Keywords

Directed Acyclic Graph Spatial Object Triangle Mesh Subdivision Surface Base Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. K. Agoston. Algebraic Topology: a First Course. Pure and Applied Mathematics, M. Dekker (ed.), New York, 1976.Google Scholar
  2. 2.
    C. L. Bajaj, F. Bernardini, J. Chen, and D. R. Schikore. Automatic reconstruction of 3D CAD models. Theory and Practice of Geometric Modeling, W. Straßer, R. Klein, and R. Rau (eds.), Springer-Ver lag, Berlin, 1996.Google Scholar
  3. 3.
    M. Bertolotto, E. Bruzzone, L. De Floriani, and E. Puppo. Multiresolution representation of volume data through hierarchical simplicial complexes. Aspects of Visual Form Processing, World Scientific, Singapore, 1994, 73–82.Google Scholar
  4. 4.
    M. Bertolotto, L. De Floriani, and P. Marzano. Pyramidal simplicial complexes. 4th International Symposium on Solid Modeling, Salt Lake City, Utah, U.S.A., ACM Press, 1995, 153–162.Google Scholar
  5. 5.
    J. Bey. Tetrahedral mesh refinement. Computing 55, 1995, 355–378.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    P. J. C. Brown. A fast algorithm for selective refinement of terrain meshes. COMPUGRAPHICS 96, GRASP, 1996, 70–82. A longer version is available as Technical Report No. 417, Computer Laboratory, Cambridge University, CB2 3QG, UK, February 1997.Google Scholar
  7. 7.
    E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 1978, 350–355.CrossRefGoogle Scholar
  8. 8.
    P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno. Simplification of tetrahedral volume with accurate error evaluation. IEEE Visualization’00, IEEE Computer Society, 2000, 85–92.Google Scholar
  9. 9.
    P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. TAn2 -visualization of large irregular volume datasets. Technical Report DISI-TR-00–07, Department of Computer and Information Science, University of Genova (Italy), 2000. Submitted for publication.Google Scholar
  10. 10.
    P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and R. Scopigno. Multiresolution modeling and rendering of volume data based on simplicial complexes. 1994 Symposium on Volume Visualization, ACM Press, 1994, 19–26.Google Scholar
  11. 11.
    P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Multiresolution modeling and visualization of volume data. IEEE Transactions on Visualization and Computer Graphics 3, 1997, 352–369.CrossRefGoogle Scholar
  12. 12.
    P. Cignoni, E. Puppo, and R. Scopigno. Representation and visualization of terrain surfaces at variable resolution. The Visual Computer 13, 1997, 199–217. A preliminary version appeared in Int. Symp. Scientific Visualization ‘95, World Scientific, 1995, 50–68.CrossRefGoogle Scholar
  13. 13.
    E. Danovaro, L. De Floriani, P. Magillo, and E. Puppo. Compressing multiresolution triangle meshes. 7th International Symposium on Spatial and Temporal Databases, SSTD 2001, Los Angeles, CA, USA, 2001.Google Scholar
  14. 14.
    E. Danovaro, L. De Floriani, P. Magillo, and E. Puppo. Representing vertex-based simplicial multi-complexes. Digital and Image Geometry, Lecture Notes in Computer Science 2243, G. Bertrand, A. Imiya, and R. Klette (eds.), Springer-Verlag, New York, 2001, 128–147.Google Scholar
  15. 15.
    E. Danovaro, L. De Floriani, P. Magillo, and E. Puppo. Data structures for 3D multi-tessellations: an overview. Technical Report DISI-TR-02–01, Department of Computer and Information Science, University of Genova (Italy), 2002.Google Scholar
  16. 16.
    M. de Berg and K. Dobrindt. On levels of detail in terrains. 11th ACM Symposium on Computational Geometry, Vancouver (Canada), ACM Press, 1995, C26-C27.Google Scholar
  17. 17.
    L. De Floriani. A pyramidal data structure for triangle-based surface description. IEEE Computer Graphics and Applications 8, 1989, 67–78.CrossRefGoogle Scholar
  18. 18.
    L. De Floriani, P. Magillo, F. Morando, and E. Puppo. Dynamic view-dependent multiresolution on a client-server architecture. CAD Journal 32, 2000, 805–823.Google Scholar
  19. 19.
    L. De Floriani, P. Magillo, and E. Puppo. Building and traversing a surface at variable resolution. IEEE Visualization 97, Phoenix, AZ (USA), 1997, 103–110.Google Scholar
  20. 20.
    L. De Floriani, P. Magillo, and E. Puppo. Data structures for simplicial multi-complexes. Advances in Spatial Databases, Lecture Notes in Computer Science 1651, Guting, Papadias, and A Lochovsky (eds.), Springer-Verlag, Berlin, 1999, 33–51.CrossRefGoogle Scholar
  21. 21.
    L. De Floriani and E. Puppo. Hierarchical triangulation for multiresolution surface description. ACM Trans. on Graphics 14, 1995, 363–411.CrossRefGoogle Scholar
  22. 22.
    L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multiresolution modeling. Geometric Modeling: Theory and Practice, R. Klein, W. Straßer, and R. Rau (eds.), Springer-Verlag, Berlin, 1997, 302–323.CrossRefGoogle Scholar
  23. 23.
    D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of three-dimensional subdivisions. Algorithmica 4, 1989, 3–32.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    D. Doo and M. Sabin. Analysis of the behaviour of recursive subdivision surfaces near extraordinary points. Computer-Aided Design 10, 1978, 356–360.CrossRefGoogle Scholar
  25. 25.
    M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineed-Weinstein. ROAMing terrain: Real-time optimally adapting meshes. IEEE Visualization’97, 1997, 81–88.Google Scholar
  26. 26.
    G. Dutton. Improving locational specificity of map data — a multiresolution, metadata-driven approach and notation. International Journal of Geographic Information Systems 10, 1996, 253–268.Google Scholar
  27. 27.
    N. Dyn. Interpolatory subdivision schemes. This volume.Google Scholar
  28. 28.
    N. Dyn, D. Levin, and J. A. Gregory. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. on Graphics 9, 1990, 160–169.zbMATHCrossRefGoogle Scholar
  29. 29.
    J. El-Sana and A. Varshney. Generalized view-dependent simplification. Computer Graphics Forum 18, 1999, C83-C94.CrossRefGoogle Scholar
  30. 30.
    W. Evans, D. Kirkpatrick, and G. Townsend. Right triangular irregular networks. Algorithmica 30, 2001, 264–286.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    T. Gerstner. Multiresolution visualization and compression of global topographic data. To appear in Geolnformatica. Short version appeared inSpatial Data Handling, P. Forer, A.G.O. Yeh, and J. He (eds.), IGU/GISc, 2000, 14–27.Google Scholar
  32. 32.
    T. Gerstner and R. Pajarola. Topology preserving and controlled topology simplifying multiresolution isosurface extraction. IEEE Visualization 2000, IEEE Computer Society, 2000, 259–266.Google Scholar
  33. 33.
    T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface extraction based on tetrahedral bisection. 1999 Symposium on Volume Visualization, ACM Press, 1999.Google Scholar
  34. 34.
    T. S. Gieng, B. Hamann, K. I. Joy, G. L. Schussman, and I. J. Trotts. Constructing hierarchies of triangle meshes. IEEE Transactions on Visualization and Computer Graphics 4, 1997, 145–160.CrossRefGoogle Scholar
  35. 35.
    D. Gomez and A. Guzman. Digital model for three-dimensional surface representation. Geo-Processing 1, 1979, 53–70.Google Scholar
  36. 36.
    C. Gotsman, S. Gumhold, and L. Kobbelt. Simplification and Compression of 3D Meshes. This volume.Google Scholar
  37. 37.
    G. Greiner and R. Grosso. Hierarchical tetrahedral-octahedral subdivision for volume visualization. The Visual Computer 16, 2000, 357–365.zbMATHCrossRefGoogle Scholar
  38. 38.
    M. H. Gross and O. G. Staadt. Progressive tetrahedralizations. IEEE Visualization’98, Research Triangle Park, NC, IEEE Computer Society, 1998, 397–402.Google Scholar
  39. 39.
    M. H. Gross, O. G. Staadt, and R. Gatti. Efficient triangular surface approximations using wavelets and quadtree data structures. IEEE Transactions on Visualization and Computer Graphics 2, 1996, 130–144.CrossRefGoogle Scholar
  40. 40.
    R. Grosso, C. Luerig, and T. Ertl. The multilevel finite element method for adaptive mesh optimization and visualization of volume data. IEEE Visualization ‘97, Phoenix, AZ, IEEE Computer Society, 1997, 387–394.Google Scholar
  41. 41.
    A. Guéziec, G. Taubin, F. Lazarus, and W. Horn. Simplicial maps for progressive transmission of polygonal surfaces. ACM VRML98, 1998, 25–31.Google Scholar
  42. 42.
    B. Hamann. A data reduction scheme for triangulated surfaces. Comput. Aided Geom. Design 11, 1994, 197–214.MathSciNetzbMATHGoogle Scholar
  43. 43.
    D. J. Hebert. Symbolic local refinement of tetrahedral grids. Journal of Symbolic Computation 17, 1994, 457–472.MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    D. Holliday and G. Nielson. Progressive volume model for rectilinear data using tetrahedral Coons patches. Data Visualization, W. de Leeuw and R. van Liere (eds.), Springer Verlag, 2000.Google Scholar
  45. 45.
    H. Hoppe. Progressive meshes. SIGGRAPH 1996, 99–108.Google Scholar
  46. 46.
    H. Hoppe. View-dependent refinement of progressive meshes. SIGGRAPH 1997, 189–198.Google Scholar
  47. 47.
    J. Kim and S. Lee. Truly selective refinement of progressive meshes. Graphics Interface 2001, Ottawa, Canada, 2001, 101–110.Google Scholar
  48. 48.
    D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput. 12, 1983, 28–35.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    R. Klein and S. Gumhold. Data compression of multiresolution surfaces. Visualization in Scientißc Computing ‘98, Springer-Verlag, Berlin, 1998, 13–24.Google Scholar
  50. 50.
    R. Klein and W. Straßer. Generation of multiresolution models from CAD data for real time rendering. Theory and Practice of Geometric Modeling (Blaubeuren II), R. Klein, W. Straßer, and R. Rau (eds.), Springer-Verlag, Berlin, 1997.Google Scholar
  51. 51.
    L. Kobbelt. (math) subdivision. SIGGRAPH 2000, 103–112.CrossRefGoogle Scholar
  52. 52.
    L. Kobbelt, S. Campagna, J. Vorsatz, and H. P. Seidel. Interactive multiresolution modeling of arbitrary meshes. SIGGRAPH 1998, 105–114.Google Scholar
  53. 53.
    M. Lee, L. De Floriani, and H. Samet. Constant-time neighbor finding in hierarchical meshes. International Conference on Shape Modeling, Genova (Italy), May 7–11 2001, 286–295.Google Scholar
  54. 54.
    M. Lee and H. Samet. Navigating through triangle meshes implemented as linear quadtrees. ACM Trans. on Graphics 19, 2000.Google Scholar
  55. 55.
    P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. Turner. Real-time, continuous level of detail rendering of height fields. SIGGRAPH 1996, 109–118.Google Scholar
  56. 56.
    P. Lindstrom and V. Pascucci. Visualization of large terrains made easy. IEEE Visualization’01, San Diego, CA, 2001, 363–370.Google Scholar
  57. 57.
    D. Luebke. Robust view-dependent simplification for very large-scale CAD visualization. Technical Report TR CS-99–33, University of Virginia, 1999.Google Scholar
  58. 58.
    D. Luebke and C. Erikson. View-dependent simplification of arbitrary polygonal environments. SIGGRAPH 1997, 199–207.Google Scholar
  59. 59.
    P. Magillo. Spatial Operations on Multiresolution Cell Complexes. PhD thesis, Dept. of Computer and Information Sciences, University of Genova (Italy), 1999.Google Scholar
  60. 60.
    J. M. Maubach. Local bisection refinement for N-simplicial grids generated by reflection. SIAM J. Comput. 16, 1995, 210–227.MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    M. Ohlberger and M. Rumpf. Hierachical and adaptive visualization on nested grids. Computing 56, 1997, 365–385.MathSciNetCrossRefGoogle Scholar
  62. 62.
    R. Pajarola. Large scale terrain visualization using the restricted quadtree triangulation. IEEE Visualization’98, Research Triangle Park, NC, IEEE Computer Society, 1998, 19–26.Google Scholar
  63. 63.
    P. Lindstrom. Out-of-core simplification of large polygonal models. SIGGRAPH 2000, 259–270.Google Scholar
  64. 64.
    J. Popovic and H. Hoppe. Progressive simplicial complexes. SIGGRAPH 1997, 217–224.Google Scholar
  65. 65.
    E. Puppo. Variable resolution terrain surfaces. Eight Canadian Conference on Computational Geometry, Ottawa, Canada, 1996, 202–210. Extended version appeared with title Variable Resolution Triangulations, Computational Geometry 11, 1998, 219–238.Google Scholar
  66. 66.
    K.J. Renze and J. H. Oliver. Generalized unstructured decimation. IEEE Computational Geometry & Applications 16, 1996, 24–32.Google Scholar
  67. 67.
    M. Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. International Journal of Numerical Engineering 20, 1984.Google Scholar
  68. 68.
    R. Southern, S. Perkins, B. Steyn, A. Muller, P. Marais, and E. Blake. A stateless client for progressive view-dependent transmission. WEB 3D 2001, February 2001.Google Scholar
  69. 69.
    J. Ruppert and R. Seidel. On the difficulty of tetrahedralizing 3-dimensional non-convex polyhedra. 5nd ACM Symposium on Computational Geometry, 1989, 380–392.Google Scholar
  70. 70.
    M. Sabin. Subdivision of Box-Splines. This volume.Google Scholar
  71. 71.
    H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison Wesley, Reading, MA, 1990.Google Scholar
  72. 72.
    L. Scarlatos and T. Pavlidis. Hierarchical triangulation using cartographies coherence. Computer Vision, Graphics, and Image Processing : Graphical Models and Image Processing 54, 1992, 147–161.CrossRefGoogle Scholar
  73. 73.
    G. Schrack. Finding neighbors of equal size in linear quadtrees and octrees in constant time. Computer Vision, Graphics, and Image Processing: Image Understanding 55, 1992, 221–230.zbMATHGoogle Scholar
  74. 74.
    W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of triangle meshes. SIGGRAPH 1992, 65–70.Google Scholar
  75. 75.
    J. R. Shewchuck. Tetrahedral mesh generation by Delaunay refinement. 14th Annual Symposium on Computational Geometry, Minneapolis, Minnesota, ACM Press, 1998, 86–95.Google Scholar
  76. 76.
    R. Sivan and H. Samet. Algorithms for constructing quadtree surface maps. 5th International Symposium on Spatial Data Handling, Charleston, 1992, 361–370.Google Scholar
  77. 77.
    P. M. Sutton and C. D. Hansen. Accelerated isosurface extraction in time-varying fields. IEEE Transactions on Visualization and Computer Graphics 6, 2000, 97–107.CrossRefGoogle Scholar
  78. 78.
    G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. Progressive forest split compression. SIGGRAPH 1998, 123–132.Google Scholar
  79. 79.
    I. J. Trotts, B. Hamann, and K. I. Joy. Simplification of tetrahedral meshes with error bounds. IEEE Transactions on Visualization and Computer Graphics 5, 1999, 224–237.CrossRefGoogle Scholar
  80. 80.
    I. J. Trotts, B. Hamann, K. I. Joy, and D. F. Wiley. Simplification of tetrahedral meshes. IEEE Visualization’98, Research Triangle Park, NC, 1998, 287–295.Google Scholar
  81. 81.
    L. Velho. Mesh simplification using four-face clusters. International Conference on Shape Modeling, Genova (Italy), May 7–11 2001.Google Scholar
  82. 82.
    L. Velho, L. Henriquez de Figueredo, and J. Gomes. A unified approach for hierarchical adaptive tesselation of surfaces. ACM Trans. on Graphics 4, 1999, 329–360.CrossRefGoogle Scholar
  83. 83.
    L. Velho and J. Gomes. Variable resolution 4-k meshes: Concepts and applications. Computer Graphics Forum 19, 2000, 195–214.CrossRefGoogle Scholar
  84. 84.
    B. Von Herzen and A. H. Barr. Accurate triangulations of deformed, intersecting surfaces. SIGGRAPH 1987, 103–110.Google Scholar
  85. 85.
    R. Westermann, L. Kobbelt, and T. Ertl. Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces. The Visual Computer 15, 1999, 100–111.CrossRefGoogle Scholar
  86. 86.
    J. C. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based rendering for polygonal models. IEEE Transactions on Visualization and Computer Graphics 3, 1997, 171–183.CrossRefGoogle Scholar
  87. 87.
    Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral framework for visualizing regular volume data. IEEE Visualization ‘97, IEEE Computer Society, 1997, 135–142.Google Scholar
  88. 88.
    D. Zorin. A method for analysis of C 1-continuity of subdivision surfaces. SIAM J. Numer. Anal. 37, 2000.Google Scholar
  89. 89.
    D. Zorin and P. Schröder (eds.). Subdivisions for Modeling and Animation, ACM SIGGRAPH 2000, Course Notes No.23, ACM Press, July 2000.Google Scholar
  90. 90.
    D. Zorin, P. Schröder, and W. Sweldens. Interactive multiresolution mesh editing. SIGGRAPH 1997, 259–268.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Leila De Floriani
    • 1
  • Paola Magillo
    • 1
  1. 1.Dipartimento di Informatica e Scienze dell’InformazioneUniversity of GenovaItaly

Personalised recommendations