Simplification and Compression of 3D Meshes

  • Craig Gotsman
  • Stefan Gumhold
  • Leif Kobbelt
Part of the Mathematics and Visualization book series (MATHVISUAL)


We survey recent developments in compact representations of 3D mesh data. This includes: methods to reduce the complexity of meshes by simplification, thereby reducing the number of vertices and faces in the mesh; methods to resample the geometry in order to optimize the vertex distribution; methods to compactly represent the connectivity data (the graph structure defined by the edges) of the mesh; methods to compactly represent the geometry data (the vertex coordinates) of a mesh.


Triangle Mesh Polygonal Mesh Original Mesh Split Operation Gate Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Alliez and M. Desbrun. Valence-driven connectivity encoding for 3D meshes. Computer Graphics Forum 20, 2001, 480–489.CrossRefGoogle Scholar
  2. 2.
    P. Alliez and M. Desbrun. Progressive compression for lossless transmission of triangle meshes. SIGGRAPH 2001, 195–202.Google Scholar
  3. 3.
    B. G. Baumgart. A polyhedron representation for computer vision. Proc. of the Nat. Comp. Conf., 1975, 589–596.Google Scholar
  4. 4.
    M. Botsch and L. Kobbelt. Resampling feature and blend regions in polygonal meshes for surface anti-aliasing. Computer Graphics Forum, 2001, C402-C410.Google Scholar
  5. 5.
    M. Chow. Optimized geometry compression for realtime rendering. Proc. IEEE Vis., 1997, 347–354.Google Scholar
  6. 6.
    P. Cignoni, C. Montani, and R. Scopigno. A comparison of mesh simplification algorithms. Computers & Graphics, 1998, 37–54.Google Scholar
  7. 7.
    P. Cignoni, C. Montani, and R. Scopigno. Metro: Measuring error on simplified surfaces. Computer Graphics Forum, 1998, 167–174.Google Scholar
  8. 8.
    P. Cignoni, C. Montani, C. Rocchini, R. Scopigno, and M. Tarini. Preserving attribute values on simplified meshes by re-sampling detail textures. The Visual Computer, 1999, 519–539.Google Scholar
  9. 9.
    J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. Brooks, and W. Wright. Simplification envelopes. SIGGRAPH 1996, 119–128.Google Scholar
  10. 10.
    J. Cohen, M. Olano, and D. Manocha. Appearance preserving simplification. SIGGRAPH 1998, 115–122.Google Scholar
  11. 11.
    D. Cohen-Or, D. Levin, and O. Remez. Progressive compression of arbitrary triangle meshes. Proc. IEEE Vis., 1999, 67–72.Google Scholar
  12. 12.
    G. V. Cormack and R. N. Horspool. Algorithms for adaptive Huffman codes. Inform. Proc. Letters 18, 1984, 159–165.MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Deering. Geometry compression. Proc. SIGGRAPH 1995, 13–20.Google Scholar
  14. 14.
    M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle. Multiresolution analysis of arbitrary meshes. SIGGRAPH 1995, 173–182.Google Scholar
  15. 15.
    M. Floater. Parameterization and smooth approximation of surface triangulations. Comput. Aided Geom. Design 14, 1997, 231–250.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    M. S. Floater and K. Hormann. Parameterization of triangulations and unorganized points. This volume.Google Scholar
  17. 17.
    M. S. Floater, K. Hormann, and M. Reimers. Parameterization of manifold triangulations. Approximation Theory X: Abstract and Classical Analysis, C. K. Chui, L. L. Schumaker, and J. Stöckler (eds.), Vanderbilt University Press, Nashville, 2002, 197–209.Google Scholar
  18. 18.
    M. Garland and P. Heckbert. Surface simplification using quadric error metrics. SIGGRAPH 1997, 209–216.Google Scholar
  19. 19.
    M. Garland and P. Heckbert. Simplifying surfaces with color and texture using quadric error metrics. Proc. IEEE Vis., 1998, 264–270.Google Scholar
  20. 20.
    A. Gersho and R. Grey. Vector quantization and signal compression. Kluwer, Boston, 1992.zbMATHCrossRefGoogle Scholar
  21. 21.
    A. Gueziec, G. Taubin, F. Lazarus, and W. Horn. Converting sets of polygons to manifold surfaces by cutting and stitching. IEEE Visualization, 1998, 383–390.Google Scholar
  22. 22.
    S. Gumhold and W. Straßer. Real time compression of triangle mesh connectivity. SIGGRAPH 1998, 133–140.Google Scholar
  23. 23.
    S. Gumhold. New bounds on the encoding of planar triangulations. Tech. Rep. WSI-2000–1, Univ. of Tübingen, 2000.Google Scholar
  24. 24.
    I. Guskov, W. Sweldens, and P. Schröder. Multiresolution signal processing for meshes. SIGGRAPH 1999, 325–334.Google Scholar
  25. 25.
    I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder. Normal meshes. SIGGRAPH 2000, 95–102.Google Scholar
  26. 26.
    H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimization. SIGGRAPH 1993, 19–26.Google Scholar
  27. 27.
    H. Hoppe. Progressive meshes. SIGGRAPH 1996, 99–108.Google Scholar
  28. 28.
    H. Hoppe. Efficient implementation of progressive meshes. Computers and Graphics 22.1, 1998, 27–36.Google Scholar
  29. 29.
    H. Hoppe. New quadric metric for simplifying meshes with appearance attributes. Proc. IEEE Vis., 1999, 59–66.Google Scholar
  30. 30.
    D. A. Huffman. A method for the construction of minimum-redundancy codes. Proc. Inst. Radio Eng., 1952, 1098–1101.Google Scholar
  31. 31.
    M. Isenburg and J. Snoeyink. Spirale reversi: reverse decoding of the Edge-Breaker encoding. 12th Can. Conf. on Comp. Geom., 2000, 247–256.Google Scholar
  32. 32.
    M. Isenburg and J. Snoeyink. Face Fixer: Compressing polygon meshes with properties. SIGGRAPH 2000, 263–270.Google Scholar
  33. 33.
    Z. Kami and C. Gotsman. Spectral coding of mesh geometry. SIGGRAPH 2000, 279–286.Google Scholar
  34. 34.
    Z. Kami and C. Gotsman. 3D mesh compression using fixed spectral bases. Proc. Graph. Interf., 2001, 1–8.Google Scholar
  35. 35.
    G. Karypis and V. Kumar. MeTiS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Version 4.0, Univ. of Minnesota, Dept. of Computer Science, 1998. Available at Scholar
  36. 36.
    D. King and J. Rossignac. Guaranteed 3.67v bit encoding of planar triangle graphs. 11th Can. Conf. on Comp. Geom., 1999, 146–149.Google Scholar
  37. 37.
    D. King, J. Rossignac, and A. Szymczak. Connectivity compression for irregular quadrilateral meshes. Tech. Rep. TR-99–36,GVU, Georgia Tech, 1999.Google Scholar
  38. 38.
    R. Klein, G. Liebich, and W. Straßer. Mesh reduction with error control. Proc. IEEE Vis., 1996, 311–318.Google Scholar
  39. 39.
    L. Kobbelt, S. Campagna, and H.-P. Seidel. A general framework for mesh decimation. Proc. Graph. Interf., 1998, 43–50.Google Scholar
  40. 40.
    L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multi-resolution modeling on arbitrary meshes. SIGGRAPH 1998, 105–114.Google Scholar
  41. 41.
    L. Kobbelt, J. Vorsatz, U. Labsik, and H.-P. Seidel. Shrink wrapping approach to remeshing polygonal surfaces. Computer Graphics Forum, 1999, 119–130.Google Scholar
  42. 42.
    L. Kobbelt, J. Vorsatz, and H.-P. Seidel. Multiresolution hierarchies on unstructured triangle meshes. Computational Geometry 14, 1999, 5–24.MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    B. Kronrod and C. Gotsman. Efficient coding of non-triangular meshes. Proc. 8-th Pacific Graphics, 2000, 235–242.Google Scholar
  44. 44.
    A. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. MAPS: Multiresolution adaptive parameterization of surfaces. SIGGRAPH 1998, 95–104.Google Scholar
  45. 45.
    E. Lee and H. Ko. Vertex data compression for triangular meshes. Proc. Pacific Graphics, 2000, 225–234.Google Scholar
  46. 46.
    P. Lindstrom and G. Turk. Fast and memory efficient polygonal simplification. Proc. IEEE Vis., 1998, 279–286.Google Scholar
  47. 47.
    P. Lindstrom and G. Turk. Evaluation of memoryless simplification. Proc. IEEE Trans. on Vis. and Comp. Graph., 1999, 98–115.Google Scholar
  48. 48.
    P. Lindstrom. Out-Of-Core simplification of large polygonal models. SIGGRAPH 2000, 259–262.Google Scholar
  49. 49.
    P. Lindstrom and G. Turk. Image-Driven Simplification. ACM Trans. on Graph., 2000, 204–241.Google Scholar
  50. 50.
    M. Mäntylä. An Introduction to Solid Modeling. Computer Science Press, Rockville, MD, 1988.Google Scholar
  51. 51.
    R. Pajarola and J. Rossignac. Compressed Progressive Meshes. IEEE Trans. on Vis. and Comp. Graph. 6.1, 2000, 79–93.CrossRefGoogle Scholar
  52. 52.
    J. Rossignac and P. Borrel. Multi-resolution 3D approximation for rendering complex scenes. 2nd Conf. on Geom. Model. in Comp. Graph., 1993, 453–465.Google Scholar
  53. 53.
    J. Rossignac. EdgeBreaker: Connectivity compression for triangle meshes. IEEE Trans. on Vis. and Comp. Graphics, 1999, 47–61.Google Scholar
  54. 54.
    J. Rossignac and D. Cardoze. Matchmaker: Manifold Breps for non-manifold r-sets. Tech. Rep. GIT-GVU-99–03 GVU Center, Georgia Inst. of Tech., 1998.Google Scholar
  55. 55.
    W. Schroeder, J. Zarge, and W. Lorensen. Decimation of triangle meshes. SIG-GRAPH 1992, 65–70.Google Scholar
  56. 56.
    W. Schroeder. A topology modifying progressive decimation algorithm. Proc. IEEE Vis., 1997, 205–212.Google Scholar
  57. 57.
    D. S. Scott. LAS02 Documentation. Technical Report, Computer Science Dept., University of Texas at Austin, 1980.Google Scholar
  58. 58.
    A. Szymczak, D. King, and J. Rossignac. An EdgeBreaker-based efficient compression scheme for regular meshes. Preprint, 2000.Google Scholar
  59. 59.
    G. Taubin and J. Rossignac. Geometric compression through topological surgery. ACM Trans. on Graphics 17.2, 1998, 84–115.CrossRefGoogle Scholar
  60. 60.
    G. Taubin, A. Gueziec, W. Horn, and F. Lazarus. Progressive forest split compression. SIGGRAPH 1998, 123–132.Google Scholar
  61. 61.
    C. Tourna and C. Gotsman. Triangle mesh compression. Proc. Graph. Interf., 1998, 26–34.Google Scholar
  62. 62.
    G. Turan. Succinct representations of graphs. Discrete Appl. Math. 8, 1984, 289–294.MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    G. Turk. Re-tiling polygonal surfaces. SIGGRAPH 1992, 55–64.Google Scholar
  64. 64.
    W. Tutte. A census of planar triangulations. Can. Journ. of Math. 14, 1962, 21–38.MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    I. H. Witten, R. M. Neal and J. G. Cleary. Arithmetic coding for data compression. Comm. of the ACM 30(6), 1987, 520–540.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Craig Gotsman
    • 1
  • Stefan Gumhold
    • 2
  • Leif Kobbelt
    • 3
  1. 1.Computer Science DepartmentTechnion, HaifaIsrael
  2. 2.WSI/GRIS, University of TübingenGermany
  3. 3.Computer Graphics Group, RWTH-AachenGermany

Personalised recommendations