In Vitro Screening of Cytochrome P450 Induction Potential

  • O. Pelkonen
  • J. Hukkanen
  • P. Honkakoski
  • J. Hakkola
  • P. Viitala
  • H. Raunio
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 37)


Induction is defined as the increase in the amount and activity of a drug-metabolising enzyme, which is a long-term (hours and days) consequence of a chemical exposure. Previously, the study of induction of drug metabolism was largely empirical and phenomenological, and prediction beyond the compounds under actual study was practically impossible. During the last decade, however, and particularly as a consequence of the detailed knowledge obtained about regulatory factors governing the expression and induction of cytochrome P450 (CYP) enzymes, induction can be understood on a detailed mechanistic basis and predictability of pharmacological and toxicological consequences has become possible. Mechanistic understanding provides also a basis for the development of new in vitro methods to measure and predict induction.


Glucocorticoid Receptor Nuclear Receptor Human Hepatocyte Primary Hepatocyte Aryl Hydrocarbon Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Razzak Z, Loyer P, Fautrel A, Gautier J-C, Corcos L, Turlin B, Beaune P, Guillouzo A (1993) Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol Pharmacol 44: 707–715PubMedGoogle Scholar
  2. Aida K, Negishi M (1991) Post-transcriptional regulation of coumarin 7-hydroxylase (P450Coh) induction by xenobiotics in mouse liver: mRNA stabilization by pyrazole. Biochemistry 30: 8041–8045PubMedCrossRefGoogle Scholar
  3. Baciewicz AM, Self TH, Bekemeyr WB (1987) Update on rifampicin drug interactions. Arch Int Med 147: 565–568CrossRefGoogle Scholar
  4. Backlund M, Johansson I, Mkrtchian S, Ingelman-Sundberg M (1997) Signal transduction-mediated activation of the aryl hydrocarbon receptor in rat hepatoma H4IIE cells. J Biol Chem 272: 31755–31763PubMedCrossRefGoogle Scholar
  5. Baes M, Gulick T, Choi H-S, Martinoli MG, Simha D, Moore DD (1994) A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol Cell Biol 14: 1544–1551PubMedGoogle Scholar
  6. Benedetti MS (2000) Enzyme induction and inhibition by new antiepileptic drugs: a review of human studies. Fundam Clin Pharmacol 14: 301–319PubMedCrossRefGoogle Scholar
  7. Berghard A, Gradin K, Pongratz I, Whitelaw M, Poellinger L (1993) Cross-coupling of signal transduction pathways: the dioxin receptor mediates induction of cytochrome P-450IA1 expression via a protein kinase C-dependent mechanism. Mol Cell Biol 13: 677–689PubMedGoogle Scholar
  8. Bertilsson G, Berkenstam A, Blomquist P (2001) Functionally conserved xenobiotic responsive enhancer in cytochrome P450 3A7. Biochem Biophys Res Commun 280: 139–144PubMedCrossRefGoogle Scholar
  9. Bertilsson G, Heidrich J, Svensson K, Asman M, Jendeberg L, Sydow-Bäckman M, Ohlsson R, Postlind H, Blomquist P, Berkenstam A (1998) Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci USA 95: 12208–12213PubMedCrossRefGoogle Scholar
  10. Blumberg B, Sabbagh W Jr, Juguilon H, Bolado J Jr, van Meter CM, Ong ES, Evans RM (1998) SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes 12: 3195–3205CrossRefGoogle Scholar
  11. Brodie MJ, Dichter MA (1996) Antiepileptic drugs. N Eng J Med 334: 168–175CrossRefGoogle Scholar
  12. Carrier F, Owens RA, Nebert DW, Puga A (1992) Dioxin-dependent activation of murine Cyp l a-1 gene transcription requires protein kinase C-dependent phosphorylation. Mol Cell Biol 12: 1856–1863PubMedGoogle Scholar
  13. Carroccio A, Wu D, Cederbaum AI (1994) Ethanol increases content and activity of human cytochrome P4502E1 in a transduced HepG2 cell line. Biochem Biophys Res Commun 203: 727–733PubMedCrossRefGoogle Scholar
  14. Celander M, Weisbrod R, Stegeman JJ (1997) Glucocorticoid potentiation of cytochrome P4501A1 induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin in porcine and human endothelial cells in culture. Biochem Biophys Res Commun 232: 749–753PubMedCrossRefGoogle Scholar
  15. Chang TKH, Yu L, Maurel P, Waxman DJ (1997) Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res 57: 1946–1954PubMedGoogle Scholar
  16. Christians U, Sewing KF (1993) Cyclosporin metabolism in transplant patients. Pharmacol Ther 57: 291–345PubMedCrossRefGoogle Scholar
  17. Curi-Pedrosa R, Daujat M, Pichard L, Ourlin JC, Clair P, Gervot L, Lesca P, Domergue J, Joyeux H, Fourtanier G, Maurel P (1994) Omeprazole and lansoprazole are mixed inducers of CYP1A and CYP3A in human hepatocytes in primary culture. J Pharmacol Exp Ther 269: 384–390PubMedGoogle Scholar
  18. Dalet-Beluche I, Boulenc X, Fabre G, Maurel P, Bonfils C (1992) Purification of two cytochrome P450 isozymes related to CYP2A and CYP3A gene families from monkey (baboon, Papio papio) liver microsomes. Cross reactivity with human forms. Eur J Biochem 204: 641–648Google Scholar
  19. Daujat M, Charrasse S, Fabre I, Lesca P, Jounaidi Y, Larroque C, Poellinger L, Maurel, P (1996) Induction of CYP1A1 gene by benzimidazole derivatives during Caco-2 cell differentiation. Evidence for an aryl-hydrocarbon receptor-mediated mechanism Eur J Biochem 237: 642–652Google Scholar
  20. Diaz D, Fabre I, Daujat M, Fabre G, Joyeux H, Bories P, Michel H, Maurel P (1990) The gastric antisecretory drug omeprazole is an aryl hydrocarbon-like inducer of human hepatic cytochrome P450. Gastroenterology 99: 737–747PubMedGoogle Scholar
  21. Donato MT, Castell JV, Gomez-Lechon MJ (1995) Effect of model inducers on cytochrome P450 activities of human hepatocytes in primary culture. Drug Metab Dispos 23: 553–558PubMedGoogle Scholar
  22. Donato MT, Viitala P, Rodriguez-Antona C, Lindfors A, Castell JV, Raunio H, Gomez-Lechon MJ, Pelkonen 0 (2000) CYP2A5/CYP2A6 expression in mouse and human hepatocytes treated with various in vivo inducers. Drug Metab Dispos 28: 1321–1326Google Scholar
  23. Dzeletovic N, McGuire J, Daujat M, Tholander J, Ema M, Fujii-Kuriyama Y, Bergman J, Maurel P, Poellinger L (1997) Regulation of dioxin receptor function by omeprazole. J Biol Chem 272: 12705–12713PubMedCrossRefGoogle Scholar
  24. Fernandez-Salguero P, Pineau T, Hilbert DM, McPhail T, Lee SST, Kimura S, Nebert DW, Rudikoff S, Ward JM, Gonzalez FJ (1995) Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 268: 722–726PubMedCrossRefGoogle Scholar
  25. Finta C, Zaphiropoulos PG (2000) The human cytochrome P4503A locus. Gene evolution by capture of downstream exons. Gene 260: 13–23Google Scholar
  26. Forman BM, Chen JM, Evans RM (1997) Hypolipidemic drugs, poly-unsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferatoractivated receptors a and d. Proc Natl Acad Sci USA 94: 4312–4317PubMedCrossRefGoogle Scholar
  27. Forman BM, Tzameli I, Choi H.S, Chen J, Simha D, Seol W, Evans R.M, Moore DD (1998) Androstane metabolites bind to and deactivate the nuclear receptor CARP. Nature 395: 612–615PubMedCrossRefGoogle Scholar
  28. Gerbal-Chaloin S, Pascussi J-M, Pichard-Garcia L, Daujat M, Waechter F, Fabre J-M, Carrère N, Maurel P (2001) Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab Dispos 29: 242–251PubMedGoogle Scholar
  29. Glass CK, Rose DW, Rosenfeld MR (1997) Nuclear receptor coactivators. Curr Opin Cell Biol 9: 222–232PubMedCrossRefGoogle Scholar
  30. Goldstein JA, de Morais SMF (1994) Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 4: 285–299PubMedCrossRefGoogle Scholar
  31. Goodwin B, Hodgson E, Liddle C (1999) The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol Pharmacol 56: 1329–1339PubMedGoogle Scholar
  32. Gradin K, Whitelaw ML, Toftgârd R, Poellinger L, Berghard A (1994) A tyrosine kinase-dependent pathway regulates ligand-dependent activation of the dioxin receptor in human keratinocytes. J Biol Chem 269: 23800–23807PubMedGoogle Scholar
  33. Greuet J, Pichard L, Bonfils C, Domergue J, Maurel P (1996) The fetal specific gene CYP3A7 is inducible by rifampicin in adult human hepatocytes in primary culture. Biochem Biophys Res Comm 225: 689–694PubMedCrossRefGoogle Scholar
  34. Gu Y-Z, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40: 519–561PubMedCrossRefGoogle Scholar
  35. Guengerich FP (1995) Cytochromes P450 of human liver. Classification and activity profiles of the major enzymes. In: Pacifici GM, Fracchia GN (eds) Advances in drug metabolism in man Office for the Official Publications of the European Communities, European Commission, Luxenbourg. pp 179–231Google Scholar
  36. Hakkola J, Pasanen M, Pelkonen O, Hukkanen J, Evisalmi S, Anttila S, Rane A, Mäntylä M, Purkunen R, Saarikoski S, Tooming M, Raunio H (1997) Expression of CYP1B1 in human adult and fetal tissues and differential inducibility of CYP1B1 and CYP1A1 by Ah receptor ligands in human placenta and cultured cells. Carcinogenesis 18: 391–397PubMedCrossRefGoogle Scholar
  37. Hankinson 0 (1994) The role of the aryl hydrocarbon receptor nuclear translocator protein in aryl hydrocarbon receptor action. Trends Endocrinol Metab 5: 240–244PubMedCrossRefGoogle Scholar
  38. Hankinson 0 (1995) The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol 35: 307–340PubMedCrossRefGoogle Scholar
  39. Harvey JL, Paine AJ, Maurel P, Wright MC (2000) Effect of the adrenal 11-ßhydroxylase inhibitor metyrapone on human hepatic cytochrome P-450 ex-Google Scholar
  40. pression: induction of cytochrome P-450 3A4. Drug Metab Dispos 28:96–101Google Scholar
  41. Hebert MF, Roberts JP, Prueksaritanont T, Benet LZ (1992) Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by heptic enzyme induction. Clin Pharmacol Ther 52: 453–457PubMedCrossRefGoogle Scholar
  42. Hoffman EC, Reyes H, Chu F-F, Sander F, Conley LH, Brooks BA, Hankinson O (1991) Cloning of a factor required for activity of the Ah ( Dioxin) receptor. Science 252: 954–958Google Scholar
  43. Honkakoski P, Negishi M (1998) Regulatory DNA elements of phenobarbital-Google Scholar
  44. responsive cytochrome P450 CYP2B genes. J Biochem Toxicol 12:3–9 Honkakoski P, Negishi M (2000) Regulation of cytochrome P450 (CYP) genesGoogle Scholar
  45. by nuclear receptors. Biochem J 347:321–337Google Scholar
  46. Honkakoski P, Moore R, Washburn KA, Negishi M (1998b) Activation by diverse xenochemicals of the 51-base pair phenobarbital-responsive enhancer module in the CYP2B10 gene. Mol Pharmacol 53: 597–601PubMedGoogle Scholar
  47. Honkakoski P, Jääskeläinen I, Kortelahti M, Urtti A (2001) A novel drug-regulated expression system based on nuclear receptor CAR. Pharm Res 18: 146–150PubMedCrossRefGoogle Scholar
  48. Honkakoski P, Zelko I, Sueyoshi T, Negishi M (1998a) The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module in the Cyp2b10 gene. Mol Cell Biol 18: 5652–5658PubMedGoogle Scholar
  49. Hukkanen J (2001) Xenobiotic-metabolizing cytochrome P450 enzymes in human lung. Department of Pharmacology and Toxicology, PhD Thesis, University of Oulu, Acta Universitatis Ouluensis, Series D Medica 621Google Scholar
  50. Hukkanen J, Lassila A, Päivärinta K, Valanne S, Sarpo S, Hakkola J, Pelkonen O, Raunio H (2000) Induction and regulation of xenobiotic-metabolizing cytochrome P450 s in the human A549 lung adenocarcinoma cell line. Am J Resp Cell Mol Biol 22: 360–366Google Scholar
  51. Jounaidi Y, Guzelian PS, Maurel P, Vilarem M-J (1994) Sequence of the 5’-flanking region of CYP3A5: comparative analysis with CYP3A4 and CYP3A7. Biochem Biophys Res Commun 205: 1741–1747PubMedCrossRefGoogle Scholar
  52. Kawamoto T, Sueyoshi T, Zelko I, Moore R, Washburn K, Negishi M (1999) Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene. Mol Cell Biol 19: 6318–6322PubMedGoogle Scholar
  53. Kikuchi H, Hossain A, Yoshida H, Kobayashi S (1998) Induction of cytochrome P-450 lA1 by omeprazole in human HepG2 cells is protein tyrosine kinase-dependent and is not inhibited by alpha-naphthoflavone. Arch Biochem Biophys 358: 351–358PubMedCrossRefGoogle Scholar
  54. Kliewer SA, Lehmann JM, Milburn MV, Willson TM (1999) The PPARs and PXRs: nuclear xenobiotic receptors that define novel hormone signaling pathways. Recent Prog Horm Res 54: 345–367PubMedGoogle Scholar
  55. Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, McKee DD, Oliver BB, Willson TM, Zetterström RH, Perlmann T, Lehmann JM (1998) An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92: 73–82PubMedCrossRefGoogle Scholar
  56. Klotz U, Ammon E (1998) Clinical and toxicological consequences of the inductive potential of ethanol. Eur J Clin Pharmacol 54: 7–12PubMedCrossRefGoogle Scholar
  57. Kostrubsky VE, Strom SC, Wood SG, Wrighton SA, Sinclair PR, Sinclair JF (1995) Ethanol and isopentanol increase CYP3A and CYP2E in primary cultures of human hepatocytes. Arch Biochem Biophys 322: 516–520PubMedCrossRefGoogle Scholar
  58. Kozak KR, Abbott B, Hankinson O (1997) ARNT-deficient mice and placental differentiation. Dev Biol 191: 297–305PubMedCrossRefGoogle Scholar
  59. Krey G, Braissant O, L’Horset F, Kalkhoven E, Perroud M, Parker MG, Wahli W (1997) Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. 11: 779–791Google Scholar
  60. Lahvis GP, Bradfield CA (1998) Ahr null alleles: distinctive or different? Bioehem Pharmacol 56: 781–787Google Scholar
  61. Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA (1998) The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 102: 1016–1023PubMedCrossRefGoogle Scholar
  62. Li AP, Maurel P, Gomez-Lechon MJ, Cheng LC, Jurima-Romet M (1997) Pre-clinical evaluation of drug-drug interaction potential: present status of the application of primary human hepatocytes in the evaluation of cytochrome P450 induction. Chem Biol Interact 107: 5–16PubMedCrossRefGoogle Scholar
  63. Lieber CS (1997) Cytochrome P-4502E1: Its physiological and pathological role. Physiol Rev 77: 517–544PubMedGoogle Scholar
  64. Lin JH, Lu AYH (2001) Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Annu Rev Pharmacol Toxicol 41: 535–567PubMedCrossRefGoogle Scholar
  65. Liu SY, Gonzalez FJ (1995) Role of the liver-enriched transcription factor HNF-1 alpha in expression of the CYP2E1 gene. DNA Cell Biol 14: 285–293PubMedCrossRefGoogle Scholar
  66. Maltepe E, Schmidt JV, Baunoch D, Bradfield CA, Simon MC (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386: 403–407PubMedCrossRefGoogle Scholar
  67. Masubuchi N, Li AP, Okazaki 0 (1998) An evaluation of the cytochrome P450 induction potential of pantoprazole in primary human hepatocytes. ChemBiol Interact 114: 1–13Google Scholar
  68. Masuyama H, Hiramatsu Y, Kunitomi M, Kudo T, MacDonald PN (2000) Endocrine disrupting chemicals, phthalic acid and nonylphenol, activate pregnane X receptor-mediated transcription. Mol Endocrinol 14: 421–428PubMedCrossRefGoogle Scholar
  69. McDonnell WM, Scheiman JM, Traber PG (1992) Induction of cytochrome P4501A genes (CYPIA) by omeprazole in the human alimentary tract. Gastroenterology 103: 1509–1516PubMedGoogle Scholar
  70. Mimura J, Ema M, Sogawa K, Fujii-Kuriyama Y (1999) Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes Dev 13: 20–25PubMedCrossRefGoogle Scholar
  71. Mimura J, Yamashita K, Nakamura K, Morita M, Takagi TN, Nakao K, Ema M, Sogawa K, Yasuda M, Katsuki M, Fujii-Kuriyama Y (1997) Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin ( TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells 2: 645–654Google Scholar
  72. Moore JT, Kliewer SA (2000) Use of the nuclear receptor PXR to predict drug interactions. Toxicology 153: 1–10PubMedCrossRefGoogle Scholar
  73. Moore LB, Goodwin B, Jones SA, Wisely GB, Serabjit-Singh CJ, Willson TM, Collins JL, Kliewer SA (2000b) St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci USA 97: 7500–7502Google Scholar
  74. Moore LB, Parks DJ, Jones SA, Bledsoe RK, Consler TG, Stimmel JB, Goodwin B, Liddle C, Blanchard SG, Willson TM, Collins JL, Kliewer SA (2000a) Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J Biol Chem 275: 15122–15127PubMedCrossRefGoogle Scholar
  75. Morel F, Beaune PH, Ratanasavanh D, Flinois JP, Yang CS, Guengerich FP, Guillouzo A (1990) Expression of cytochrome P-450 enzymes in cultured human hepatocytes. Eur J Biochem 191: 437–444PubMedCrossRefGoogle Scholar
  76. Muntane-Relat J, Ourlin JC, Domergue J, Maurel P (1995) Differential effects of cytokines on the inducible expression of CYP1A1, CYP1A2, and CYP3A4 in human hepatocytes in primary culture. Hepatology 22: 1143–1153PubMedCrossRefGoogle Scholar
  77. Negishi M, Honkakoski P (2000) Induction of drug metabolism by nuclear receptor CAR: molecular mechanisms and implications for drug research. Eur J Pharm Sci 11: 259–264CrossRefGoogle Scholar
  78. Pascussi J-M, Gerbal-Chaloin S, Fabre J-M, Maurel P, Vilarem M-J (2000b) Dexamethasone enhances constitutive androstane receptor expression in human hepatocytes: consequences on cytochrome P450 gene regulation. Mol Pharmacol 58: 1441–1450PubMedGoogle Scholar
  79. Pascussi JM, Drocourt L, Fabre J-M, Maurel P, Vilarem M-J (2000a) Dexamethasone induces pregnane X receptor and retinoid X receptor-alpha expression in human hepatocytes: synergistic increase of CYP3A4 induction by pregnane X receptor activators. Mol Pharmacol 58: 361–372PubMedGoogle Scholar
  80. Pascussi JM, Jounaidi Y, Drocourt L, Domergue J, Balabaud C, Maurel P, Vilarem M-J (1999) Evidence for the presence of a functional pregnane X receptor response element in the CYP3A7 promoter gene. Biochem Biophys Res Commun 260: 377–381PubMedCrossRefGoogle Scholar
  81. Pascussi J-M, Gerbal-Chaloin S, Pichard-Garcia L, Daujat M, Fabre J-M, Maurel P, Vilarem M-J (2000c) Interleukin-6 negatively regulates the expression of pregnane X receptor and constitutively activated receptor in primary human hepatocytes. Biochem Biophys Res Commun 274: 707–713PubMedCrossRefGoogle Scholar
  82. Pelkonen O, Mäenpää J, Taavitsainen P, Rautio A, Raunio H (1998) Inhibition and induction of human cytochrome P450 ( CYP) enzymes. Xenobiotica 28: 1203–1253Google Scholar
  83. Pichard L, Fabre I, Daujat M, Domergue J, Joyeux H, Maurel P (1992) Effect of corticosteroids on the expression of cytochromes P450 and on cyclosporin A oxidase activity in primary cultures of human hepatocytes. Mol Pharmacol 41: 1047–1055PubMedGoogle Scholar
  84. Pichard L, Fabre I, Fabre G, Domergue J, Saint Aubert B, Mourad G, Maurel P (1990) Cyclosporin A drug interactions. Screening for inducers and inhibitors of cytochrome P-450 (cyclosporin A oxidase) in primary cultures of human hepatocytes and in liver microsomes. Drug Metab Dispos 18: 595–606PubMedGoogle Scholar
  85. Pichard-Garcia L, Pascussi J-M, Maurel P (2000) Carotenoids activate PXR and are inducers of CYP2B6 and CYP3A4 in human hepatocytes in primary culture (abstract). 13th International Symposium on Microsomes and Drug Oxidations. p 195Google Scholar
  86. Quattrochi LC, Vu T, Tukey RH (1994) The human CYP1A2 gene and induction by 3-methylcholanthrene, a region of DNA that supports Ah-receptor binding and promoter-specific induction. J Biol Chem 269: 6949–6954PubMedGoogle Scholar
  87. Raunio H, Rautio A, Pelkonen 0 (1999) The CYP2A subfamily: function, expression and genetic polymorphism. In: Vineis P, Malats N, Lang M, d’Errico A, Caporaso N, Cuzick J and Boffetta P (eds) Metabolic polymorphisms and susceptibility to cancer. IARC Scientific Publications No. 148, Lyon, pp 197–207Google Scholar
  88. Rodriguez-Antona C, Jover R, Gómez-Lechón MJ, Castell JV (2000) Quantitative RT-PCR measurement of human cytochrome P-450s: application to drug induction studies. Arch Biochem Biophys 376: 109–116PubMedCrossRefGoogle Scholar
  89. Ronis MJJ, Lindros KO, Ingelman-Sundberg M (1996) The CYP2E subfamily. In: Ioannides C, Parke DV (eds) Cytochromes P450: metabolic and toxicological aspects. CRC Press, Boca Raton, pp 211–239Google Scholar
  90. Runge D, Köhler C, Kostrubsky VE, Jäger D, Lehmann T, Runge DM, May U, Stolz DB, Strom SC, Fleig WE, Michalopoulos GK (2000) Induction of cytochrome P450 (CYP)1A1, CYP1A2, CYP3A4 but not CYP2C9, CYP2C19, multidug resistance (MDR-1) and multidrug resistance associ-Google Scholar
  91. ated protein (MRP-1) by prototypical inducers in human hepatocytes. Biochem Biophys Res Commun 273:333–341Google Scholar
  92. Savas Ü, Griffin ICJ, Johnson EF (1999) Molecular mechanisms of cytochrome P-450 induction by xenobiotics: an expanded role for nuclear hormone receptors. Mol Pharmacol 56: 851–857PubMedGoogle Scholar
  93. Schmidt JV, Bradfield CA (1996) Ah receptor signalling pathways. Annu Rev Cell Dev Biol 12: 55–89PubMedCrossRefGoogle Scholar
  94. Schmidt JV, Su GHT, Reddy JK, Simon MC, Bradfield CA (1996) Characterization of a murine Ahr null allele: animal model for the toxicity of halogenated dioxins and biphenyls. Proc Natl Acad Sci USA 93: 6731–6736PubMedCrossRefGoogle Scholar
  95. Schuetz JD, Schuetz EG, Thottassery JV, Guzelian PS, Strom S, Sun D (1996) Identification of a novel dexamethasone responsive enhancer in the human CYP3A5 gene and its activation in human and rat liver cells. Mol Pharmacol 49: 63–72PubMedGoogle Scholar
  96. Schuetz EG, Schuetz JD, Strom SC, Thompson MT, Fisher RA, Molowa DT, Li D, Guzelian PS (1993) Regulation of human liver cytochromes P-450 in family 3A in primary and continuous culture of human hepatocytes. Hepatology 18: 1254–1262PubMedCrossRefGoogle Scholar
  97. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270: 414–423PubMedGoogle Scholar
  98. Silva JM, Morin PE, Day SH, Kennedy BP, Payette P, Rushmore T, Yergey JA, Nicoll-Griffith DA (1998) Refinement of an in vitro cell model for cytochrome P450 induction. Drug Metab Dispos 26: 490–496PubMedGoogle Scholar
  99. Smith DA (2000) Induction and drug development. Eur J Pharm Sci 11: 185–189PubMedCrossRefGoogle Scholar
  100. Song B-J (1995) Gene structure and multiple regulations of the ethanol-inducible cytochrome P4502E1 (CYP2E1) subfamily. In: Watson RR (ed) Drug and alcohol abuse reviews, vol. 6: alcohol and hormones. Humana Press, Totowa, pp 177–192Google Scholar
  101. Sotaniemi EA, Pelkonen RO eds (1987) Enzyme induction in man. Taylor and Francis, LondonGoogle Scholar
  102. Sotaniemi EA, Rautio A, Bäckström M, Arvela P, Pelkonen 0 (1995) CYP3A4 and CYP2A6 activities marked by the metabolism of lignocaine and cou-marin in patients with liver and kidney diseases and epileptic patients. Br J Clin Pharmacol 39: 71–76Google Scholar
  103. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, La-Tour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kliewer SA (2001) The nuclear receptor PXR is a lithocholic acid sen-Google Scholar
  104. sor that protects against liver toxicity. Proc Natl Acad Sci USA 98:3369–3374Google Scholar
  105. Sueyoshi T, Negishi M (2001) Phenobarbital response elements of cytochrome P450 genes and nuclear receptors. Annu Rev Pharmacol Toxicol 41: 123–143PubMedCrossRefGoogle Scholar
  106. Sueyoshi T, Kawamoto T, Zelko I, Honkakoski P, Negishi M (1999) The repressed nuclear receptor. CAR responds to phenobarbital in activating the human CYP2B6 gene. J Biol Chem 274: 6043–6046PubMedCrossRefGoogle Scholar
  107. Tang YM, Wo Y-YP, Stewart J, Hawkins AL, Griffin CA, Sutter TR, Greenlee WF (1996) Isolation and characterization of the human cytochrome P450 CYPJB] gene. J Biol Chem 271: 28324–28330PubMedCrossRefGoogle Scholar
  108. Tilloy-Ellul A, Raffalli-Mathieu F, Lang M (1999). Analysis of RNA-proteinGoogle Scholar
  109. interactions of mouse liver cytochrome P4502A5 mRNA. Biochem J 339:695–703Google Scholar
  110. Tzameli I, Pissios P, Schuetz EG, Moore DD (2000) The xenobiotic compound 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene is an agonist ligand for the nuclear receptor CAR. Mol Cell Biol 20: 2951–2958PubMedCrossRefGoogle Scholar
  111. Wan Y-JY, An D, Cai Y, Repa JJ, Chen THP, Flores M, Postic C, Magnuson MA, Chen J, Chien KR, French S, Mangelsdorf DJ, Sucov HM (2000) Hepatocyte-specific mutation establishes retinoid X receptor alpha as a heterodimeric integrator of multiple physiological processes in the liver. Mol Cell Biol 20: 4436–4444PubMedCrossRefGoogle Scholar
  112. Waxman DJ (1999) P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys 369: 11–23PubMedCrossRefGoogle Scholar
  113. Waxman DJ, Azaroff L (1992) Phenobarbital induction of cytochrome P-450 gene expression. Biochem J 281: 577–592PubMedGoogle Scholar
  114. Wei P, Zhang J, Egan-Hafley M, Liang S, Moore DD (2000) The nuclear receptor CAR mediates specific xenobiotic induction of drug metabolism. Nature 407: 920–923PubMedCrossRefGoogle Scholar
  115. Whitlock JPJ (1999) Induction of cytochrome P4501A1. Annu Rev Pharmacol Toxicol 39: 103–125PubMedCrossRefGoogle Scholar
  116. Wilkinson GR (1996) Cytochrome P4503 A (CYP3A) metabolism: Prediction of in vivo activity in humans. J Pharmacokin Biopharm 24: 475–490Google Scholar
  117. Wrighton SA, Stevens JC (1992) The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 22: 1–21PubMedCrossRefGoogle Scholar
  118. Xie W, Barwick JL, Simon CM, Pierce AM, Safe S, Blumberg B, Guzelian PS, Evans RM (2000b) Reciprocal activation of xenobiotic response genes by nuclear receptors SXR/PXR and CAR. Genes Dev 14: 3014–3023PubMedCrossRefGoogle Scholar
  119. Xie W, Radominska-Pandya A, Shi Y, Simon CM, Nelson MC, Ong ES, Waxman DJ, Evans RM (2001) An essential role for nuclear receptorsGoogle Scholar
  120. SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci USA 98:3375–3380Google Scholar
  121. Xie W, Barwick JL, Downes M, Blumberg B, Simon CM, Nelson MC, Neuschwander-Tetri BA, Brunt EM, Guzelian PS, Evans RM (2000a) Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature 406: 435–439PubMedCrossRefGoogle Scholar
  122. Zelko I, Negishi M (2000) Phenobarbital-elicited activation of nuclear receptor CAR in induction of cytochrome P450 genes. Biochem Biophys Res Commun 277: 1–6PubMedCrossRefGoogle Scholar
  123. Zevin S, Benowitz NL (1999) Drug interactions with tobacco smoking. An update. Clin. Pharmacokinet 36: 425–438Google Scholar
  124. Zhu W, Song L, Zhang H, Matoney L, LeCluyse E, Yan B (2000) Dexamethasone differentially regulates expression of carboxylesterase genes in humans and rats. Drug Metab Dispos 28: 186–191PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • O. Pelkonen
  • J. Hukkanen
  • P. Honkakoski
  • J. Hakkola
  • P. Viitala
  • H. Raunio

There are no affiliations available

Personalised recommendations