Skip to main content

Part of the book series: Universitext ((UTX))

Abstract

Based on a variational model, the numerical analysis of microstructure challenges supercomputers because of enforced oscillations on the length scale of every mesh-size. Local minimizers in a finite element discretization cluster and so complicate the numerical simulation to become a numerical analyst’s nightmare.

The lectures address model examples to study these phenomena, such as the quartic polynomial W(x) = (x 2 – 1)2 in the real variable x. As a common property of energy densities in models of phase transitions in solids or fluids, the relevant ingredients are that W(x) is non-negative and non-convex and has zeros at a fixed number of points, here x = ±1, the wells or zero-energy phases. Then, the minimization problems are of the form

$$ (M)MinimizeE(u) = \int\limits_{\Omega } {W(Du)dx + (lower\;order\;terms\;in\;u)\;over\;u \in A.} $$
(M)

and typically allow for minimizing (better infimizing) sequences enforcing finer and finer oscillations which we call microstructures.

The numerical simulation of (M) and two related forms (G) and (C) is the subject of the lectures. In the first step, we identify predictable quantities and argue that the macroscopic displacement field, the Young measure for the description of oscillations and the stress field are reasonable computable targets. Typically, infimizing sequences are weakly convergent but not strongly convergent. Hence, relaxation is involved, for instance by measure valued solution concepts in (G) or by convexification in problem (C) (respectively by a quasiconvexification in (Q)).

Once a target quantity is fixed, step two selects one of the discrete counterparts (M h ), (G h ), or (C h ) of problem (M), (G), or (C), respectively. It is not efficient to always rely on (M h ). Instead, if the convexification is available, i.e. if the convexified or quasiconvexified energy density is known by an analytic formula, then (C h ) is preferable: standard finite element schemes with a standard solver of the (nonlinear) discrete minimization problem are available and even adaptive mesh-refining algorithms work.

However, there are problems where relaxation is not feasible or inapplicable. This leaves important and difficult applications with enormous numerical difficulties for future research. These lectures may be viewed as an introduction and first step to challenge them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Ball and G. Knowles. A numerical method for detecting singular minimizers. Numer. Math., 51: 181–197, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. M. Ball and V. J. Mizel. One-dimensional variational problems whose minimizers do not satisfy the euler-lagrange equation. Arch. Rational Mech. Anal., 90: 325–388, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  3. J.M. Ball. A version of the fundamental theorem for young measures. In M. Slemrod M. Rascle, D. Serre, editor, Partial differential equations and continuum models of phase transitions, volume 344 of Lecture Notes in Physics, pages 207–215. Berlin: Springer, 1989.

    Google Scholar 

  4. J.M. Ball. Singularities and computation of minimizers for variational problems. In Proceedings of Foundations of Computational Mathematics Conference, Oxford, 1999. Cambridge University Press, 1999.

    Google Scholar 

  5. J.M. Ball and R.D. James. Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Analysis, 100: 13–52, 1987.

    Article  MATH  Google Scholar 

  6. J.M. Ball and R.D. James. Proposed experimental tests of the theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. Lond. A., 338: 389450, 1992.

    Google Scholar 

  7. J.M. Ball, B. Kirchheim, and J. Kirstensen. Regularity of quasiconvex envelopes. Cale. Var., 11: 333–359, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Bethuel, G. Huisken, S. Müller, and K. Steffen. Variational models for microstructure and phase transitions. In S. Hildebrandt and M. Struwe, editors, Calculus of variations and geometric evolution problems, volume 1713 of Springer LNM, pages 85–210. Springer, 1999.

    Google Scholar 

  9. K. Bhattacliarya and G. Dolzmann. Relaxation of sonic multi-well problems. Proc. Roy. Soc. Edinburgh Sect. A, 2001. accepted.

    Google Scholar 

  10. O. Bolza. A fifth necessary condition for a strong extremum of the integral J f (x, y, y’)dxr. Trans. Amer. Math. Soc., 7 (2): 314–324, 1906.

    MathSciNet  MATH  Google Scholar 

  11. S.B. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, 1994.

    MATH  Google Scholar 

  12. C. Carstensen and G. Dolzmann. An a priori error estimate for finite element discretisations in nonlinear elasticity for polyconvex materials under small loads. Berichtsreihe des Mathematischen Seminars Kiel, (98–19), 1999.

    Google Scholar 

  13. C. Carstensen and S.A. Funken. Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods. East- West-Journal of Numerical Analysis, 8 (3): 153–175, 2000.

    MathSciNet  MATH  Google Scholar 

  14. C. Carstensen and S.A. Funken. Fully reliable localised error control in the fein. SIAM J.Sci. Comp 21, pages 1465–1484, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Carstensen and S. Müller. Local stress regularity in scalar non-convex variational problem. in prep., 2001.

    Google Scholar 

  16. C. Carstensen and P. Plechâé. Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp., 66: 997–1026, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Carstensen and P. Plechâé. Numerical analysis of a relaxed variational model of hysteresis in two-phase solids. preprint, 80, 2000. Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig.

    Google Scholar 

  18. C. Carstensen and P. Plechâé. Numerical analysis of compatible phase transitions in elastic solids. SIAM J. Numner. Anal., 37 (6): 2061–2081, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Carstensen and A. Prohl. Numerical analysis of relaxed rnicromagnetics by penalised finite elements. Numer. Math. (in print ), 2001.

    Google Scholar 

  20. C. Carstensen and T. Roubicek. Numerical approximation of Young measures in non-convex variational problems. Numer. Math., 84: 395–415, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Carstensen and R. Verfürth. Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal., 36(5):15711587, 1999.

    Google Scholar 

  22. M. Chipot. Numerical analysis of oscillations in nonconvex problems. Numer. Math., 59: 747–767, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Chipot. Elements of nonlinear analysis. Birkhäuser, 2000.

    Google Scholar 

  24. M. Chipot and C. Collins. Numerical approximations in variational problems with potential wells. SIAM J. Numer. Anal., 29: 1002–1019, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Chipot, C. Collins, and D. Kinderlehrer. Numerical analysis of oscillations in multiple well problems. Numer. Math., 70: 259–282, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  26. Charles Collins and Mitchell Luskin. The computation of the austeniticmartensitic phase transition. In Partial Differential Equations and Continuum Models of Phase Transitions, volume 344 of Lecture Notes in Physics, pages 34–50, New York, 1989. Springer-Verlag.

    Google Scholar 

  27. B. Dacorogna. Direct methods in the calculus of variations. In Applied Mathematical Sciences, volume 78. Springer, 1989.

    Google Scholar 

  28. A. De Simone. Energy minimizers for large ferromagnetic bodies. Arch. Rat. Mech. Anal., 125: 99–143, 1993.

    Article  MATH  Google Scholar 

  29. G. Dolzmann. Variational methods for crystalline microstructure - analysis and computation. Habilitationsschrift, Universität Leipzig, 2001.

    Google Scholar 

  30. G. Dolzmann and N. J. Walkington. Estimates for numerical approximations of rank-one convex envelopes. Numer. Math., 85: 647–663, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Dunford and J.T. Schwartz. Linear Operators, volume I. Interscience, New York, 1967.

    Google Scholar 

  32. L.C. Evans. Partial differential equations. Graduate Studies in Mathematica 19. American Mathematical Society, Providence, RI, 1998.

    Google Scholar 

  33. L.C. Evans and R.F. Gariepy. Measure theory and fine properties of functions. In Stud. Ade. Math. CRC Press, Boca Raton, 1992.

    Google Scholar 

  34. D. French. On the convergence of finite element approximations of a relaxed variational problem. SIAM J. Num. Anal., 27: 419–436, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  35. G. Friesecke. A necessary and sufficient condition for non-attainment and formation of microstructure almost everywhere in scalar variational problems. Proc. R. Soc. Edin., 124A: 437–471, 1994.

    Article  MATH  Google Scholar 

  36. M. K. Gobbert and A. Prohl. A survey of classical and new finite element methods for the computation of crystalline microstructure. Appl. Num. Math., 2001. (to appear).

    Google Scholar 

  37. J. Goodman, R. Kohn, and L. Reyna. Numerical study of a relaxed variational problem from optimal design. Comput. Methods Appl. Mech. Engrg., 57 (1): 107–127, 1986.

    MathSciNet  MATH  Google Scholar 

  38. R.D. James and D. Kinderlehrer. Frustration in ferromagnetic materials. Continuum Mech. Thermodyn., 2: 215–239, 1990.

    Article  Google Scholar 

  39. C. Johnson. On plasticity with hardening. Journ. of Math. Anal. and Appl., 62: 325–336, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  40. D. Kinderlehrer, R. James, and Luskin M., editors. Microstructure and phase transition, volume 54 of The IMA Volumes in Mathematics and its Applications. Springer-Verlag, 1993.

    Google Scholar 

  41. R.V. Kohn. The relaxation of a double-well energy. Continuum Mech. Thermodyn., 3: 193–236, 1991.

    MathSciNet  MATH  Google Scholar 

  42. Bo Li and Mitchell Luskin. Finite element analysis of microstructure for the cubic to tetragonal transformation. SIAM J. Numer. Anal., 35: 376–392, 1998.

    Article  MATH  Google Scholar 

  43. Bo Li and Mitchell Luskin. Theory and computation for the microstructure near the interface between twinned layers and a pure variant of martensite. Materials Science 6 Engineering A, 273: 237–240, 1999.

    Google Scholar 

  44. Mitchell Luskin. On the computation of crystalline microstructure. Acta Numerica, 5: 191–257, 1996.

    Article  Google Scholar 

  45. Mitchell Luskin. Approximation of a laminated microstructure for a rotationally invariant, double well energy density. Numer. Math., 75: 205–221, 1997.

    Google Scholar 

  46. Mitchell Luskin and Ling Ma. Analysis of the finite element approximation of microstructure in micromagnetics. SIAM J. Numer. Anal., 29: 320–331, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  47. L. Ma and N.J. Walkington. On algorithms for nonconvex optimization in the calculus of variations. SIAM J. Numer. Anal., 32: 900–923, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  48. J. Matousek and P. Plechâc. On functional separately convex hulls. Discrete Comput. Geom., 19: 105–130, 1998.

    Google Scholar 

  49. R.A. Nicolaides and N.J. Walkington. Computation of microstructure utilizing Young measure representations. In R.A.Rogers C.A.Rogers, editor, Recent Advances in Adaptive and Sensory Materials and their Applications, pages 131141. Technomic Publ., Lancaster, 1992.

    Google Scholar 

  50. R.A. Nicolaides and N.J. Walkington. Strong Convergence of Numerical Solutions to Degenerate Variational Problems. Math. Comp., 64: 117–127, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  51. P. Pedregal. Parametrised measures and variational principles. Birkhäuser, 1997.

    Google Scholar 

  52. T. Roubícek. Relaxation in Optimization Theory and Variational Calculus, volume 4 of Series in Nonlinear Analysis and Applications. Walter De Gruyter, New York, 1997.

    Google Scholar 

  53. T. Roubícek and M. Kruzik. Optimization problems with concentration and oscillation effects: relaxation theory and numerical approximation. Numer. Funct. Anal. Optim., 20: 511–530, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  54. T. Roubícek and M. Kruzik. Adaptive approximation algorithm for relaxed optimization problems. In Fast solution of discretized optimization problems. WIAS, Berlin, 2000. (in print).

    Google Scholar 

  55. G.A. Seregin. The regularity properties of solutions of variational problems in the theory of phase transitions in elastic solids. St. Petersburg Math. J., 4 (6): 979–1003, 1996.

    MathSciNet  Google Scholar 

  56. G.A. Seregin. A variational problem on the phase equilibrium of an elastic body. St. Petersburg Math. J., 10 (3): 477–506, 1999.

    MathSciNet  Google Scholar 

  57. L. Tartar. Beyond young measures. Meccanica, 30: 505–526, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  58. L. Tartar. private communication, 1999.

    Google Scholar 

  59. R. Temam. Mathematical problems in plasticity. Gauthier-Villars, Paris, 1985.

    Google Scholar 

  60. R. Verfürth. A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, 1996.

    Google Scholar 

  61. L.C. Young. Lectures on the calculus of variations and optimal control theory. W.B. Saunder Co., Philadelphia-London-Toronto, Ont, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carstensen, C. (2001). Numerical Analysis of Microstructure. In: Blowey, J.F., Coleman, J.P., Craig, A.W. (eds) Theory and Numerics of Differential Equations. Universitext. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04354-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04354-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07533-9

  • Online ISBN: 978-3-662-04354-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics