Skip to main content

Properties of Ceramic Materials and Their Evaluation

  • Chapter
Book cover Engineering Ceramics

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The mechanical properties of a ceramic material must be thoroughly studied before it is considered for any application that imparts certain stresses. Mechanical properties such as hardness, strength, elastic modulus, and fracture toughness are key properties in a ceramic material’s performance. Fatigue behavior is important when cyclic stresses are present. At elevated temperatures, the creep behavior of a ceramic is of utmost importance. Erosion and wear phenomena are system-specific. A ceramic component’s erosion and wear behavior have to be known especially if the component comes into contact with other solids, liquids, and high pressure gases. Any combination of fatigue, creep, erosion, wear, and corrosion phenomena is possible, which may complicate the analysis of material response under those circumstances. This chapter describes the mechanical properties of ceramic materials and their evaluation, in general, with some specific examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.W. Mott: Micro-Indentation Hardness Testing. (Butterworths Scientific London, 1956)

    Google Scholar 

  2. M.A. Meyers and K.K. Chawla: Mechanical Metallurgy. (Prentice-Hall Englewood Cliffs NJ, 1984)

    Google Scholar 

  3. M.L. Cohen: Calculation of Bulk Moduli of Diamond and Zincblende Solids. Phys. Rev. B 32 [12], 7988–7991 (1985)

    Article  CAS  Google Scholar 

  4. M.R. Wixom: Chemical Preparation and Shock Wave Compression of Carbon Nitride Precursors. J. Am. Ceram. Soc. 73 [7], 1973–1978 (1990)

    Article  CAS  Google Scholar 

  5. D.W. Richerson: Modern Ceramic Engineering. (Marcel Dekker New York, 1982)

    Google Scholar 

  6. A.Y. Liu and M.L. Cohen: Prediction of New Low Compressibility Solids. Science 245, 841–842 (1989)

    Article  CAS  Google Scholar 

  7. W.E. Lee and W.M. Rainforth: Ceramic Microstructures. (Chapman & Hall London, 1994)

    Google Scholar 

  8. R. Warren and V.K. Sarin: Particulate Ceramic-Matrix Composites. In: Ceramic Matrix Composites. R. Warren (ed.). (Blackie and Son London, 1992), pp. 146–166

    Google Scholar 

  9. E. Scafe, L. Fabbri, G. Grillo, and L. di Rese: Improved Technique for Young’s Modulus Determination by Flexural Resonance. Ceram. Eng. Sci. Proc. 13 [9–10], 1094–1102 (1992)

    CAS  Google Scholar 

  10. J. Krautkrämer and H. Krautkrämer: Ultrasonic Testing of Materials. (Springer-Verlag Berlin, 1990)

    Book  Google Scholar 

  11. J.N. Adami, D. Bolsch, J. Bressers, E. Fenske, and M. Steen: Uniaxial Tension and Cyclic Tension-Compression Testing of Ceramics. J. Eur. Ceram. Soc. 7 [4], 227–236 (1991)

    Article  CAS  Google Scholar 

  12. G. Higgins, B. O’Brien, and A. Sun Wai: Mechanical Testing of Ceramics and Ceramic Matrix Composites: An Overview. Key Eng. Mater. 72–74, 551–568 (1992)

    Article  Google Scholar 

  13. D.C. Larsen and S.L. Stuchly: The Mechanical Evaluation of Ceramic Fiber Composites. In: Fiber Reinforced Ceramic Composites. K.S. Mazdiyasni (ed.). (Noyes Park Ridge NJ, 1990)

    Google Scholar 

  14. R. Morrell: Mechanical Test Methods for Ceramic Matrix Composites. Brit. Ceram. Trans. 94 [1], 1–9 (1995)

    CAS  Google Scholar 

  15. H.P. Kirchner: Strengthening of Ceramics. (Marcel Dekker New York, 1979)

    Google Scholar 

  16. J. Mencik: Glass Science and Technology 12: Strength and Fracture of Glass and Ceramics. (Elsevier Amsterdam Holland, 1992)

    Google Scholar 

  17. G.D. Quinn: Strength and Proof Testing. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 585–598

    Google Scholar 

  18. S.M. Wiederhorn: In :Fracture of Ceramics. In: Mechanical and Thermal Properties of Ceramics. J.B. Wachtman, Jr. (ed.). (National Bureau of Standards Special Publication 303, May 1969), pp. 217–240

    Google Scholar 

  19. A.A. Griffith: The Phenomena of Rupture and Flow in Solids. Philos. Trans. R. Soc. (London) A 221, 163–198 (1920)

    Article  Google Scholar 

  20. G.C. Eckold: Structural Design with Advanced Ceramics. In: Ceramic Matrix Composites. R. Warren (ed.). (Blackie and Son Glasgow Scotland, 1992), pp. 115–144

    Google Scholar 

  21. W. Weibull: Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 18 [3], 293–297 (1951)

    Google Scholar 

  22. S. Van der Zwaag: The Concept of Filament Strength and the Weibull Modulus. J. Test. Eval. 17 [5], 292–298 (1989)

    Article  Google Scholar 

  23. D.G. Raheja: Assurance Technologies. (McGraw-Hill New York, 1991)

    Google Scholar 

  24. S.L. Fok and J. Smart: The Accuracy of Failure Predictions Based on Weibull Statistics. J. Eur. Ceram. Soc. 15 [9], 905–908 (1995)

    Article  CAS  Google Scholar 

  25. M. Sutcu: Weibull Statistics Applied to Fiber Failure in Ceramic Composites and Work of Fracture. Acta Metall. 37 [2], 651–661 (1989)

    Article  CAS  Google Scholar 

  26. R.W. Davidge: Engineering Performance Prediction for Ceramics. Mater. Sci. Tech. 2 [9], 902–909 (1986)

    Article  CAS  Google Scholar 

  27. J. Lamon: Statistical Approaches to Failure for Ceramic Reliability Assesment. J. Am. Ceram. Soc. 71 [2], 106–112 (1988)

    Article  CAS  Google Scholar 

  28. S. Ito and H. Okuda: Evaluation of Some Ceramics: Silicon Nitride, Silicon Carbide, and Zirconia. In: Fine Ceramics. S. Saito (ed.). (Elsevier Essex England, 1985), pp. 218–226

    Google Scholar 

  29. R.W. Davidge: Mechanical Behavior of Ceramics. (Cambridge University Press Cambridge England, 1979)

    Google Scholar 

  30. A.G. Evans and R.W. Davidge: Strength and Fracture of Stoichiometric Polycrystalline UO 2 . J. Nucl. Mater. 33 [3], 249–260 (1969)

    Article  CAS  Google Scholar 

  31. H. Salmang and H. Scholze: Keramik. (Springer-Verlag Berlin, 1982)

    Book  Google Scholar 

  32. T.A. Michalske and B.C. Bunker: Slow Fracture Model Based on Strained Silicate Structures J. Appl. Phys. 56 [10], 2686–2693 (1984)

    Article  CAS  Google Scholar 

  33. R.N. Katz, G.D. Quinn, and E.M. Lenoe: High Temperature Static Fatigue in Ceramics. In: Fatigue, Environment, and High Temperature Effects. (Plenum Press New York, 1983), pp. 221–230

    Google Scholar 

  34. F.F. Lange, B.I. Davis, and M.G. Metcalf: Strengthening of Polyphase Materials Through Oxidation. J. Mater. Sci. 18 [5], 1497–1505 (1983)

    Article  CAS  Google Scholar 

  35. J.L. Smialek and N.S. Jacobson: Mechanism of Strength Degradation for Hot Corrosion ofa-SiC. J. Am. Ceram. Soc. 69 [101], 741–752 (1986)

    Article  CAS  Google Scholar 

  36. N. Claussen: Fracture Toughness of Al 2 O 3 with an Unstabilized ZrO 2 Dispersed Phase. J. Am. Ceram. Soc. 59 [1–2], 49–51 (1976)

    Article  CAS  Google Scholar 

  37. N. Claussen: Stress-Induced Transformations of Tetragonal ZrO 2 Particles in Ceramic Matrices. J. Am. Ceram. Soc. 61 [1–2], 85–86 (1978)

    Article  CAS  Google Scholar 

  38. D.J. Green, R.H.J. Hannink, and M.D. Swain: Transformation Toughening of Ceramics. (CRC Press Boca Raton FL, 1989)

    Google Scholar 

  39. D.B. Marshall and J.E. Ritter: Reliability of Advanced Structural Ceramics and Ceramic Matrix Composites-A Review. Am. Ceram. Soc. Bull. 66 [2], 309–17 (1987)

    CAS  Google Scholar 

  40. R.A. Cutler, R.J. Mayhew, K.M. Prettyman, and A.V. Virkar: High Toughness Ce-TZP/Al203 Ceramics with Improved Hardness and Strength J. Am. Ceram. Soc. 74 [1], 179–186 (1991)

    Article  CAS  Google Scholar 

  41. Y.G. Gogotsi: Review: Particulate Silicon Nitride Based Composites. J. Mater. Sci. 29 [10], 2541–2556 (1994)

    Article  CAS  Google Scholar 

  42. R.K. Bordia and R. Raj: Analysis of Sintering of a Composite with a Glass or Ceramic Matrix. J. Am. Ceram. Soc. 69 [3], C-55–57 (1986)

    Article  Google Scholar 

  43. K. Niihara, A. Nakahira, T. Uchiyama, and T. Hirai: High-Temperature Mechanical Properties of Al 2 O 5 -SiC Composites. In: Fracture Mechanics of Ceramics, Vol.7. R.C. Bradt, A.G. Evans, D.P.H. Hasselman, and F.F. Lange (eds.). (Plenum Press New York, 1986), pp. 103–106

    Chapter  Google Scholar 

  44. T. Zambetakis, J.L. Guille, B. Willer, and M. Daire: Mechanical Properties of Pressure-Sintered Al 2 O 3 -ZrC Composites. J. Mater. Sci. 22, 1135–1140(1987)

    Article  CAS  Google Scholar 

  45. S.J. Burden: Ceramic Cutting Tools. Ceram. Eng. Sci. Proc. 3 [7–8], 351–359(1982)

    Article  Google Scholar 

  46. D. Baril and M.K. Jain: Evaluation of SiC Platelets as a Reinforcement for Oxide Matrix Composites. Ceram. Eng. Sci. Proc. 12 [7–8], 1175–1192(1991)

    Article  CAS  Google Scholar 

  47. G.H. Beall: Design of Glass-Ceramics. Rev. Sol. State Sci. 3 [3–4], 333–354(1989)

    Google Scholar 

  48. R.R. Tummala and A.L. Friedberg: Strength of Glass-Crystal Composites. J. Am. Ceram. Soc. 52 [4], 228–229 (1969)

    Article  CAS  Google Scholar 

  49. W.J. Frey and J.D. Mackenzie: Mechanical Properties of Selected Glass-Crystal Composites. J. Mater. Sci. 2 [1], 124–130 (1967)

    Article  CAS  Google Scholar 

  50. J. Homeny and W.L. Vaughn: Whisker-Reinforced Ceramic Matrix Composites. MRS Bull. 12 [7], 66–71 (1987)

    CAS  Google Scholar 

  51. K. Xia and T.G. Langdon: Review: The Toughening and Strengthening of Ceramic Materials Through Discontinuous Reinforcement. J. Mater. Sci. 29 [20], 5219–5231 (1994)

    Article  CAS  Google Scholar 

  52. R. Warren: Fundamental Aspects of the Properties of Ceramic-Matrix Composites. In: Ceramic Matrix Composites. R. Warren (ed.). (Blackie and Son London, 1992), pp. 64–111

    Google Scholar 

  53. K.K. Chawla: Composite Materials. (Springer-Verlag New York, 1987)

    Google Scholar 

  54. B. Budiansky, J.W. Hutchinson, and A. Evans: Matrix Fracture in Fiber-Reinforced Ceramics. J. Mech. Phys. Solids. 34 [2], 167–189 (1986)

    Article  Google Scholar 

  55. W.B. Hillig: Strength and Toughness of Ceramic Matrix Composites. Ann. Rev. Mater. Sci. 17, 341–383 (1987)

    Article  CAS  Google Scholar 

  56. J. Aveston, G.A. Cooper, and A. Kelly: Single and Multiple Fracture. In: Proceedings of the Conference on the Properties of Fiber Composites. (IPC Science &; Technology Press Surrey England, 1971), pp. 15–26

    Google Scholar 

  57. D.B. Marshall, B.N. Cox, and A.G. Evans: The Mechanics of Matrix Cracking in Brittle-Matrix Fiber Composites. Acta Metall. 33 [11], 2013–2021 (1985)

    Article  Google Scholar 

  58. R.W. Davidge and J.J.R. Davies: Ceramic Matrix Fiber Composites: Mechanical Testing and Performance. Int. J. High Tech. Ceramics. 4 [2–4], 341–358(1988)

    Article  CAS  Google Scholar 

  59. M. Sutcu: Statistical Fiber Failure and Single Crack Behavior in Uniaxially Reinforced Ceramic Composites. J. Mater. Sci. 23 [3], 928–933(1988)

    Article  Google Scholar 

  60. M.D. Thouless and A.G. Evans: Effects of Pull-Out on the Mechanical Properties of Ceramic Matrix Composites. Acta Metall. 36 [3], 517–522 (1988)

    Article  CAS  Google Scholar 

  61. M.D. Thouless, O. Sbaizero, L.S. Sigl, and A.G. Evans: Effect of Interface Mechanical Properties on Pullout in a SiC-Fiber-Reinforced Lithium Aluminum Silicate Glass Ceramic. J. Am. Ceram. Soc. 72 [4], 525–532(1989)

    Article  CAS  Google Scholar 

  62. A.G. Evans and D.B. Marshall: The Mechanical Behavior of Ceramic Matrix Composites. Acta Metall. 37 [10], 2567–2583 (1989)

    Article  CAS  Google Scholar 

  63. K.M. Knowles and X.F. Yang: Mathematical Modeling of the Strength and Toughness of Unidirectional Fiber-Reinforced Ceramics. Ceram. Eng. Sci. Proc. 12 [7–8], 1375–1388 (1991)

    Article  Google Scholar 

  64. S. Kimura and E. Yasuda: Fabrication and Properties of Carbon/Carbon Composites. In: Fine Ceramics. S. Saito (ed.). (Elsevier Essex England, 1985), pp. 205–211

    Google Scholar 

  65. L.L. Hench: Bioceramics: From Concept to Clinic. J. Am. Ceram. Soc. 74 [7], 1487–1510(1991)

    Article  CAS  Google Scholar 

  66. E. Fitzer Structure and Strength of Carbon—Carbon Composites. J. App. Phys. D 14 [3], 347 (1981)

    Article  CAS  Google Scholar 

  67. S. Takano, T. Kinjo, T. Uruno, T. Tlomak, and C.P. Ju: Investigation of Process-Structure Performance Relationship of Unidirectionally Reinforced Carbon-Carbon Composites. Ceram. Eng. Sci. Proc. 12 [9–10], 1914–1930(1991)

    Article  CAS  Google Scholar 

  68. G. Ziegler and W. Huttner: Engineering Properties of Carbon-Carbon and Ceramic-Matrix Composites. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991) p. 836

    Google Scholar 

  69. R. Naslain: Fibrous Ceramic-Ceramic Composites, Processing and Properties. In: Thirteenth International Conference on Science of Ceramics. P. Odier, F. Cabannes, and B. Cales. (Les Editions de Physique Cedex France, 1986), pp. C1–703–715

    Google Scholar 

  70. P. Barron-Antolin, G.H. Schiroky, and C.A. Andersen: Properties of Fiber-Reinforced Alumina Matrix Composites. Ceram. Eng. Sci. Proc. 9 [7–8], 759–766(1988)

    Article  CAS  Google Scholar 

  71. R.N. Singh and A.R. Gaddipati: Mechanical Properties of a Uniaxially Reinforced Mullite-Silicon Carbide Composite. J. Am. Ceram. Soc. 71 [2], C-100–103(1988)

    Article  Google Scholar 

  72. D.P. Stinton, A.J. Caputo, and R.A. Lowden: Synthesis of Fiber Reinforced SiC Composites by Chemical Vapor Infiltration. Am. Ceram. Soc. Bull. 65 [2], 347–350 (1986)

    CAS  Google Scholar 

  73. E. Fitzer, D. Hegen, and H. Strohmeier: Possibility of Gas Phase Impregnation with Silicon Carbide. Rev. Int. Hautes Temp. Refract. 17 [11], 23–32(1980)

    CAS  Google Scholar 

  74. B.F. Sorensen and R. Talreja: Toughness of Damage Tolerant Continuous Fiber Reinforced Ceramic Matrix Composites. J. Eur. Ceram. Soc. 15 [11], 1047–1059 (1995)

    Article  Google Scholar 

  75. S. Freiman: Brittle Fracture Behavior of Ceramics. Am. Ceram. Soc. Bull. 67 [2], 392–402 (1988)

    CAS  Google Scholar 

  76. H.L. Ewalds and R.J.H. Wanhill: Fracture Mechanics. (Edward Arnold London and Delftse Uitgevers Maatschappij b.v. Delft Netherlands, 1985)

    Google Scholar 

  77. G. Vekinis, M.F. Ashby, and P.W.R. Beaumont: R-Curve Behavior of Al 2 O 3 Ceramics. Acta Metall. 38 [6], 1151–1162 (1990)

    Article  CAS  Google Scholar 

  78. S.D. Conzone, W.R. Blumenthal, and J.R. Varner: Fracture Toughness of TiB 2 and B 4 C Using the Single Edge Preckracked Beam, Indentation Strength, Chevron Notched Beam, and Indentation Strength Methods. J. Am. Ceram. Soc. 78 [8], 2187–2192 (1995)

    Article  CAS  Google Scholar 

  79. K.E. Amin: Toughness, Hardness, and Wear. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 599–609

    Google Scholar 

  80. L.M. Barker: Short Rod K Ic Measurements of Al 2 O 3 In: Fracture Mechanics of Ceramics, Vol.3. (R.O Bradt, D.P.H. Hasselman, and F.F. Lange (eds.). (Plenum Press New York, 1978), pp. 483–494

    Google Scholar 

  81. K.P.R. Reddy, E.H. Fontana, and J.D. Helfinstine: Fracture Toughness Measurement of Glass and Ceramic Materials Using Chevron-Notched Specimens. J. Am. Ceram. Soc. 71 [6], C-310–313 (1988)

    Article  Google Scholar 

  82. D. Munz, R.T. Bubsey, and J.L. Shannon, Jr.: Fracture Toughness Determination of Al 2 O 3 Using Four-Point-Bend Specimens with Straight- Through and Chevron Notches. J. Am. Ceram. Soc. 63 [5–6], 300–305 (1980)

    Article  CAS  Google Scholar 

  83. C. Rief and K. Kromp: Fracture Toughness Testing. Int. J. High. Tech. Ceram. 4 [2–4], 301–317 (1988)

    Article  CAS  Google Scholar 

  84. G. Orange, H. Tanaka, and G. Fantozzi: Fracture Toughness of Pressureless Sintered Silicon Carbide: A Comparison of K Ic Measurement Methods. Ceram. Int. 13 [3], 159–165 (1987)

    Article  CAS  Google Scholar 

  85. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall: A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness:!, Direct Crack Measurement. J. Am. Ceram. Soc. 64 [9], 533–538(1981)

    Article  CAS  Google Scholar 

  86. C.B. Ponton and R.D. Rawlings: Vickers Indentation Fracture Toughness Part I, Review of Literature and Formulation of Standardized Indentation Toughness Equations. Mater. Sci. Tech. 5 [9], 865–872 (1989)

    Article  Google Scholar 

  87. R.F. Krause, Jr: Rising Fracture Toughness from the Bending Strengths of Indented Alumina Beams J. Am. Ceram. Soc. 71 [5], 338–343 (1988)

    Article  CAS  Google Scholar 

  88. S. Srinivasan and R.D. Scattergood: R-Curve Measurements in PSZ Ceramics. J. Mater. Res. 5 [7], 1490–1495 (1990)

    Article  CAS  Google Scholar 

  89. R.M. Anderson and L.M. Braun: Technique for the R-Curve Determination of Y-TZP Using Indentation-Produced Flaws. J. Am. Ceram. Soc. 73 [10], 3059–3062 (1990)

    Article  CAS  Google Scholar 

  90. P. Chantikul, G.R. Anstis, B.R. Lawn, and D.B. Marshall: A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness:II, Strength Method. J. Am. Ceram. Soc. 64 [9], 539–543 (1981)

    Article  CAS  Google Scholar 

  91. M.V. Swain and N. Claussen: Comparison of K Ic Values for Al 2 Or-ZrO 2 Composites Obtained from Notched-Beam and Indentation Strength Techniques. J. Am. Ceram. Soc. 66 [2], C-27–29 (1983)

    Article  Google Scholar 

  92. R.von Mises: Mechanik der Festen Korper im Plastich Deformablen Zustand. Nachr. Ges. Wiss. Göttingen 582, (1913)

    Google Scholar 

  93. E.A. Barringer and H.K. Bowen: Ceramic Powder Processing. Ceram. Eng. Sci. Proc. 5 [5–6], 285–297 (1984)

    Article  CAS  Google Scholar 

  94. G.C. Garvie, R.H.J. Hannink, and R.T. Pascoe: Ceramic Steel? Nature, London, 258 [5537], 703–704 (1975)

    Article  CAS  Google Scholar 

  95. W.R. deBoskey and H. Hahn: Opaque Lightweight Armor-Final Report. (Defense Technical Information Center Report AD822526, November 1967)

    Google Scholar 

  96. N. Tamari, T. Ogura, M. Kinoshita, and Y. Toibana: Fabrication of SiC Whisker-Si 3 N 4 Composite Materials and their Physical Properties. Bulletin of the Government Industrial Research Institute Osaka Japan, 33 [2], 129–134(1982)

    CAS  Google Scholar 

  97. R.A.J. Sambell, D.H. Bowen, and D.C. Phillips: Carbon Fiber Composites with Ceramic and Glass Matrices, Part I: Discontinuous Fibers. J. Mater. Sci., 7 [6], 663–673 (1972)

    Article  CAS  Google Scholar 

  98. E. Fitzer: In Fiber Reinforced Ceramic Composites. Whisker and Fiber Toughened Ceramics. R.A. Bradley, D.E. Clark, D.C. Larsen, and J.O. Stiegler (eds.). (The American Society for Metals Metals Park OH, 1989), pp. 165–192

    Google Scholar 

  99. R.T. Bhatt: The Properties of Silicon Carbide Fiber Reinforced Silicon Nitride Composites. In: Whisker and Fiber Toughened Ceramics. R.A. Bradley, D.E. Clark, D.C. Larsen, and J.O. Stiegler (eds.). (The American Society for Metals Metals Park OH, 1989), pp. 199–207

    Google Scholar 

  100. R.R. Wahi and B. Ilschner: Fracture Behavior of Composites Based on Al 2 O 3 -TiC J. Mater. Sci. 15 [4], 875–885 (1980)

    Article  CAS  Google Scholar 

  101. T.I. Mah and M.G. Mendiratta: Fracture Toughness and Strength of Si 3 N 4 -TiC Composites. Am. Ceram. Soc. Bull. 60 [11], 1229–1240 (1981)

    CAS  Google Scholar 

  102. S.T. Buljan, J.G. Baldoni, and M.L. Huckabee: Si 3 N 4 -SiC Composites. Am. Ceram. Soc. Bull. 66 [2], 347–352 (1987)

    CAS  Google Scholar 

  103. L. Sigl, P. Mataga, B.J. Dalgleish, R.M. McMeeking, and A.G. Evans: On the Toughness of Brittle Materials Reinforced with a Ductile Phase. Acta Metall. 36 [4], 945–953 (1988)

    Article  CAS  Google Scholar 

  104. F. Erdogan and P.F. Joseph: Toughening of Ceramics Through Crack Bridging by Ductile Particles. J. Am. Ceram. Soc. 72 [2], 262–270 (1989)

    Article  CAS  Google Scholar 

  105. R.H.J. Hannink and M.V. Swain: Progress in Transformation Toughening of Ceramics. Ann. Rev. Mater. Sci. 24, 359–408 (1994)

    Article  CAS  Google Scholar 

  106. Y. Ikuma, W. Komatsu, and S. Yaegashi: ZrO 2 -Toughened MgO and Critical Factors in Toughening Ceramic Materials by Incorporating Zirconia. J. Mater. Sci. Lett. 4 [1], 63–66 (1985)

    Article  CAS  Google Scholar 

  107. M. Ruhle, N. Claussen, and A.H. Heuer: Transformation and Microcrack Toughening as Complementary Processes in ZrO 2 -Toughened Al 2 O 3 . J. Am. Ceram. Soc. 69 [3], 195–197 (1986)

    Article  Google Scholar 

  108. J. Wang and R. Stevens: Review-Zirconia Toughened Alumina (ZTA) Ceramics. J. Mater. Sci. 24 [10], 3421–3440 (1990)

    Article  Google Scholar 

  109. J.S. Moya and M.S. Osendi: Microstructure and Mechanical Properties of Mullite/ZrO 2 Composites. J. Mater. Sci. 19 [9], 2909–2914 (1984)

    Article  CAS  Google Scholar 

  110. T. Watanabe and K. Shobu: Mechanical Properties of Hot Pressed TiB 2 -ZrO 2 Composites. J. Am. Ceram. Soc. 68 [2], C-34–36 (1985)

    CAS  Google Scholar 

  111. P.F. Becher and T.N. Tiegs: Toughening Behavior Involving Multiple Mechanisms: Whisker Reinforcement and Zirconia Toughening. J. Am. Ceram. Soc. 70 [9], 651–654 (1987)

    Article  CAS  Google Scholar 

  112. A.C. Solomah, W. Reichert, V. Rondinella, L. Esposito, and E. Toscano: Mechanical Properties, Thermal Shock Resistance, and Thermal Stability of Zirconia-Toughened Alumina-10 vol% Silicon Carbide Whisker-Ceramic Matrix Composite. J. Am. Ceram. Soc. 73 [3], 740–743 (1990)

    Article  CAS  Google Scholar 

  113. F.F. Lange: Transformation Toughening Part 5: Effect of Temperature and Alloy on Fracture Toughness. J. Mater. Sci. 17 [1], 255–262 (1982)

    Article  CAS  Google Scholar 

  114. B. Budianski, J.W. Hutchinson, and J.C. Lambropoulos: Continuum Theory of Dilatant Transformation Toughening in Ceramics. Int. J. Sol. Struct. 19 [4], 337–355 (1983)

    Article  Google Scholar 

  115. W. Pompe, H.A. Bahr, G. Gille, and W. Kreher: Increased Fracture Toughness of Brittle Materials by Microcracking in an Energy Dissipative Zone at the Crack Tip. J. Mater. Sci. Lett. 13 [12], 2720–2723(1978)

    Article  CAS  Google Scholar 

  116. K.T. Faber: Microcracking Contributions to the Toughness of ZrO 2 -Based Ceramics. In: Advances in Ceramics, Vol.12: Science and Technology of Zirconia II. N. Claussen, M. Ruhle, and A.H. Heuer (eds.). (The American Ceramic Society Columbus OH, 1984), pp. 293–305

    Google Scholar 

  117. A.G. Evans and K.T. Faber: Crack-Growth Resistance of Microcracking Brittle Materials. J. Am. Ceram. Soc. 67 [4], 255–260 (1984)

    Article  Google Scholar 

  118. M. Ruhle, A.G. Evans, R.M. McMeeking, P.G. Charalambides, and J.W. Hutchinson: Microcrack Toughening in Alumina/Zirconia. Acta Metall. 35 [11], 2701–2710 (1987)

    Article  Google Scholar 

  119. A.G. Evans: Microfracture from Thermal Expansion Anisotropy: I. Single Phase Systems. Acta Metall. 26 [12], 1845–1853 (1978)

    Article  CAS  Google Scholar 

  120. B.L. Karihaloo: Contribution of t→m Phase Transformation to the Toughening of ZTA. In: Proceedings of the 11th Riso International Symposium on Metallurgy and Materials Science. J.J. Bentzen, J.B.B. Sorensen, N. Christiansen, A. Horsewell, and B. Ralph (eds.). (Riso National Laboratory Roskilde Denmark, 1990), pp. 359–364

    Google Scholar 

  121. A.V. Virkar and R.L.K. Matsumoto: Ferroelastic Domain Switching as a Toughening Mechanism in Tetragonal Zirconia. J. Am. Ceram. Soc. 69 [10], C-224–226(1986)

    Article  Google Scholar 

  122. B.S. Li, Y.S. Cheng, K.J. Bowman, and I.W. Chen: Domain Switching as a Toughening Mechanism in Tetragonal Zirconia. J. Am. Ceram. Soc. 71 [7], C-362–364(1988)

    Article  Google Scholar 

  123. G.V. Srinivasan, J.F. Jue, S.Y. Kuo, and A.V. Virkar: Ferroelastic Domain Switching in Polydomain Tetragonal Zirconia Single Crystals. J. Am. Ceram. Soc. 72 [11], 2098–2103 (1989)

    Article  CAS  Google Scholar 

  124. A.V. Virkar and R.L.K. Matsumoto: Toughening Mechanism in Tetragonal Zirconia Polycrystal (TZP) Ceramics. In: Advances in Ceramics Vol.24 B: Science and Technology of Zirconia III. S. Somiya, N. Yamamoto, and H. Yanagida (eds.). (The American Ceramic Society Westerville OH, 1988), pp. 653–662

    Google Scholar 

  125. F.F. Lange: The Interaction of a Crack Front With a Second Phase Dispersion. Phil. Mag. 22 [179], 983–992 (1970)

    Article  CAS  Google Scholar 

  126. D.J. Green: Fracture Toughness Predictions for Crack Bowing in Brittle Particulate Composites. J. Am. Ceram. Soc. 66 [1], C-4–5 (1983)

    Google Scholar 

  127. K.T. Faber and A.G. Evans: Crack Deflection Processes-I.Theory. Acta Metall. 31 [4], 565–576 (1983)

    Article  Google Scholar 

  128. H. Liu, K.L. Weisskopf, and G. Petzow: Crack Deflection Process for Hot Pressed Whisker Reinforced Ceramic Composites. J. Am. Ceram. Soc. 72 [4], 559–563 (1989)

    Article  CAS  Google Scholar 

  129. D.H. Carter and G.F. Hurley: Crack Deflection as a Toughening Mechanism in SiC-Whisker-Reinforced MoSi 2 . J. Am. Ceram. Soc. 70 [4], C-79–81(1987)

    Article  Google Scholar 

  130. K.T. Faber and A.G. Evans: Intergranular Crack Deflection Toughening in Silicon Carbide. J. Am. Ceram. Soc. 66 [6], C-94–96 (1983)

    Article  Google Scholar 

  131. P.F. Becher, C.H. Hsueh, P. Angelini, and T.N. Tiegs: Toughening Behavior in Whisker Reinforced Ceramic Matrix Composites. J. Am. Ceram. Soc. 71 [12], 1050–1061 (1988)

    Article  CAS  Google Scholar 

  132. M. Bengisu: Densification and Mechanical Properties of Whisker and/or Zirconia Toughened Alumina, Effect of Shock Treatment and Consolidation Method. Ph.D. Thesis. (New Mexico Institute of Mining and Technology Socorro NM, 1992)

    Google Scholar 

  133. J.K. Wells and P.W.R. Beaumont: The Toughness of a Composite Containing Short Brittle Fibers. J. Mater. Sci. 23 [4], 1274–1278 (1988)

    Article  CAS  Google Scholar 

  134. M.C. Shaw and K.T. Faber: Temperature Dependent Toughening in Whisker Reinforced Ceramics. In: Materials Science Research, Vol.21: Ceramic Microstructures’86, Role of Interfaces. J.A. Pask and A.G. Evans (eds.). (Plenum Press New York, 1987), pp. 775–794

    Google Scholar 

  135. S. Iio, M. Watanabe, M. Matsubara, and Y. Matsuo: Mechanical Properties of Alumina/Silicon Carbide Whisker Composites. J. Am. Ceram. Soc. 72 [10], 1880–1884 (1989)

    Article  CAS  Google Scholar 

  136. R. Hayami, K. Ueno, I. Kondou, N. Tamari, and O. Kamigato: Si 3 N 4 -SiC Whisker Composite Material. In: Materials Science Research, Vol.20: Tailoring Multiphase and Composite Ceramics. R.E. Tressler, G.L. Messing, C.G. Pantano, and R.E. Newnham (eds.). (Plenum Press New York, 1988), pp. 663–674

    Google Scholar 

  137. T. Kandori, Y. Ukyo, and S. Wada: Directly HIP’ed SiC Whisker Reinforced Silicon Nitrides. In: Whisker and Fiber Toughened Ceramics. R.A. Bradley, D.E. Clark, D.C. Larsen, and J.O. Stiegler (eds.). (The American Society for Metals International Metals Park OH, 1989), pp. 125–129

    Google Scholar 

  138. T.N. Tiegs: Properties of SiC Whisker Reinforced Oxide Matrix Composites. In: Whisker and Fiber Toughened Ceramics. R.A. Bradley, D.E. Clark, D.C. Larsen, and J.O. Stiegler (eds.). (The American Society for Metals Metals Park OH, 1989), pp. 105–108

    Google Scholar 

  139. S.K. Douglas, P.W.R. Beaumont, and M.F. Ashby: A Model for the Toughness of Epoxy-Rubber Particulate Composites. J. Mater. Sci. 15 [5], 1109–1123(1980)

    Article  Google Scholar 

  140. R.C. Leuth: Determination of Fracture Toughness Parameters for Tungsten Carbide-Cobalt Alloys. In: Fracture Mechanics of Ceramics, Vol.2. R.C. Bradt, D.P.H. Hasselman, and F.F. Lange (eds.). (Plenum Press New York, 1974), pp. 791–806

    Chapter  Google Scholar 

  141. V.D. Krstic, P.S. Nicholson, and R.G. Hoagland: Toughening of Glasses by Metallic Particles. J. Am. Ceram. Soc. 64 [9], 499–504 (1981)

    Article  CAS  Google Scholar 

  142. P.L. Swanson, C.J. Fairbanks, B.R. Lawn, Y.W. Mai, and B.J. Hockey: Crack Interface Grain Bridging as a Fracture Resistant Mechanism in Ceramics: I, Experimental Study on Alumina. J. Am. Ceram. Soc. 70 [4], 279–289(1987)

    Article  CAS  Google Scholar 

  143. Y.W. Mai and B.R. Lawn: Crack Interface Grain Bridging as a Fracture Resistance Mechanism in Ceramics: II, Theoretical Fracture Mechanics Model. J. Am. Ceram. Soc. 70 [4], 289–294 (1987)

    Article  CAS  Google Scholar 

  144. G. Vekinis, M.F. Ashby, and P.W.R. Beaumont: R-Curve Behavior in Al 2 O 3 Ceramics. Acta Metall. Mater. 38 [6], 1151–1162 (1990)

    Article  CAS  Google Scholar 

  145. H. Wieninger, K. Kromp, and R.F. Pabst: Crack Resistance Curves of Alumina and Zirconia at Room Temperature. J. Mater. Sci. 21 [2], 411–418(1986)

    Article  CAS  Google Scholar 

  146. J.C. Hay and K.W. White: Grain Bridging Mechanisms in Monolithic Alumina and Spinel. J. Am. Ceram. Soc. 76 [7], 1849–1854 (1995)

    Article  Google Scholar 

  147. B.R. Lawn, L.M. Braun, S.J. Bennison, and R.E. Cook: Reply to “Comment on Role of Grain Size in the Strength and R-Curve Properties of Alumina”. J. Am. Ceram. Soc. 76 [7], 1900–1901 (1993)

    Article  CAS  Google Scholar 

  148. A.G. Evans and R.M. McMeeking: On the Toughening of Ceramics by Strong Reinforcements. Acta Metall. 34 [12], 2435–2441 (1986)

    Article  Google Scholar 

  149. R. Morrell: Handbook of Properties of Technical and Engineering Ceramics, Part 1. (Her Majesty’s Stationery Office London, 1985)

    Google Scholar 

  150. K.T. Faber and A.G. Evans: Crack Deflection Processes-II.Experiment. Acta Metall. 31 [4], 577–584 (1983)

    Article  Google Scholar 

  151. G.J. Zhang, X.M. Yue, Z.Z. Jin, and J.Y. Dai: In-Situ Synthesized TiB 2 Toughened SiC J. Eur. Ceram. Soc. 16 [4], 409–412 (1996)

    Article  CAS  Google Scholar 

  152. Y.G. Gogotsi: Review: Particulate Silicon Nitride Based Composites. J. Mater. Sci. 29 [10], 2541–2556 (1994)

    Article  CAS  Google Scholar 

  153. M. Bengisu, O.T. Inal, and O. Tosyali: On Whisker Toughening in Ceramic Materials. Acta Metall. Mater. 39 [11], 2509–2517 (1991)

    Article  CAS  Google Scholar 

  154. D.P.H. Hasselman: Thermal Stress Resistance of Engineering Ceramics. Mater. Sci. Eng. 71, 251–264 (1985)

    Article  CAS  Google Scholar 

  155. R.C. Hendricks, G. McDonald, and R.L. Mullen: Residual Stress in Plasma-Sprayed Ceramic Turbine Tip and Gas-Path Seal Specimen. Ceram. Eng. Sci. Proc. 4 [9–10], 802–809 (1983)

    Article  Google Scholar 

  156. M.M. Schwartz: Ceramic Joining (ASM International Materials Park OH, 1990)

    Google Scholar 

  157. R. Danzer: Properties of Ceramics During High Temperature Applications. Ceram. Forum Int. 70 [6], 280–286 (1993)

    CAS  Google Scholar 

  158. F. Sudreau, C. Olagnon, and G. Fantozzi: Lifetime Prediction of Ceramics: Importance of the Test Method. Ceram. Int. 20 [2], 125–135 (1994)

    Article  CAS  Google Scholar 

  159. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann: Introduction to Ceramics. (John Wiley & Sons New York, 1976)

    Google Scholar 

  160. F. Mignard, C. Olagnon, and G. Fantozzi: Acoustic Emission Monitoring of Damage Evaluation in Ceramics Submitted to Thermal Shock. J. Eur. Ceram. Soc. 15 [7], 651–653 (1995)

    Article  CAS  Google Scholar 

  161. O. Sbaizero: Prove di Resistenza Agli Shock Termici. Ceramurgia 24 [4], 143–150(1994)

    CAS  Google Scholar 

  162. W.P. Rogers and A.F. Emery: Contact Thermal Shock Test of Ceramics. J. Mater. Sci. 27 [1], 146–152 (1992)

    Article  CAS  Google Scholar 

  163. A.G. Evans: Fatigue in Ceramics. Int. J. Fract. 16 [6], 485–498 (1980)

    Article  CAS  Google Scholar 

  164. S. Horibe: A New Method for Tension-Compression Fatigue Testing of Ceramic Materials. J. Mater. Sci. Lett. 9 [7], 745–747 (1990)

    Article  CAS  Google Scholar 

  165. F. Guiu, M.J. Reece, and D.A.J. Vaughan: Cyclic Fatigue of Ceramics. J. Mater. Sci. 26 [12], 3275–3286 (1991)

    Article  CAS  Google Scholar 

  166. C.J. Gilbert, R.H. Dauskart, and R.O. Ritchie: Behavior of Cyclic Fatigue Cracks in Monolithic Silicon Nitride. J. Am. Ceram. Soc. 78 [9], 2291–2300(1995)

    Article  CAS  Google Scholar 

  167. D. Lewis and R.W. Rice: Comparison of Static, Cyclic, and Thermal-Shock Fatigue in Ceramic Composites. Ceram. Eng. Sci. Proc. 3 [9–10], 714–721 (1982)

    Article  CAS  Google Scholar 

  168. L. Ewart and S. Suresh: Crack Propagation in Ceramics Under Cyclic Loads. J. Mater. Sci. 22 [4], 1173–1192 (1987)

    Article  CAS  Google Scholar 

  169. S. Suresh and J.R. Brockenbrough: Theory and Experiments of Fracture in Cyclic Compression: Single Phase, Transforming Ceramics, and Ceramic Composites. Acta Metall. 36 [6], 1455–1470 (1988)

    Article  CAS  Google Scholar 

  170. D.L. Lewis III: Cyclic Mechanical Fatigue in Ceramic-Ceramic Composites, An Update. Ceram. Eng. Sci. Proc. 4 [9–10], 874–881 (1983)

    Article  Google Scholar 

  171. J.W. Holmes, T. Kotil, and W.T. Foulds: High Temperature Fatigue of SiC Fiber Reinforced Si 3 N 4 Ceramic Composites. In: Symposium on High Temperature Composites, Proc. Am. Soc. for Composites. (Technomic Lancaster PA, 1989)

    Google Scholar 

  172. D.C. Phillips: Long-Fiber Reinforced Ceramics. In: Ceramic Matrix Composites. R. Warren (ed.). (Blackie and Son London, 1992), pp. 167–196

    Google Scholar 

  173. G. Choi and S. Horibe: The Environmental Effect on Cyclic Fatigue Behavior in Ceramic Materials. J. Mater. Sci. 30 [6], 1565–1569 (1995)

    Article  CAS  Google Scholar 

  174. R. Raj: Fundamental Research in Structural Ceramics for Service near 2000°C J. Am. Ceram. Soc. 76 [9], 2147–2173 (1993)

    Article  CAS  Google Scholar 

  175. S. Suresh, L.X. Han, and J.J. Petrovic: Fracture of Si 3 N 4 -SiC Whisker Composites Under Cyclic Loads. J. Am. Ceram. Soc. 71 [3], C-158–161 (1988)

    Article  Google Scholar 

  176. D.S. Jacobs and I.W. Chen: Cyclic Fatigue in Ceramics: A Balance Between Crack Shielding Accumulation and Degredation. J. Am. Ceram. Soc. 78[51], 513–520(1995)

    Article  CAS  Google Scholar 

  177. T. Soma, M. Matsuda, M. Matsui, and I. Oda: Cyclic Fatigue Testing of Ceramic Materials. Int. J. High Tech. Ceram. 4 [2–4], 289–299 (1988)

    Article  CAS  Google Scholar 

  178. H.N. Ko: Fatigue Strength of Sintered Si 3 N 4 Under Rotary Bending. J. Mater. Sci. Lett. 6 [2], 175–177 (1987)

    Article  CAS  Google Scholar 

  179. M. Reece and F. Guiu: Repeated Indentation Method for Studying Cyclic Fatigue in Ceramics. J. Am. Ceram. Soc. 73 [4], 1004–1013 (1990)

    Article  CAS  Google Scholar 

  180. W.R. Cannon and T.G. Langdon: Review, Creep of Ceramics, Part 1 Mechanical Characteristics. J. Mater. Sci. 18 [1], 1–50 (1983)

    Article  CAS  Google Scholar 

  181. Y. Maehara and T.G. Langdon: Review-Superplasticity in Ceramics. J. Mater. Sci. 25 [5], 2275–2286 (1990)

    Article  CAS  Google Scholar 

  182. F. Wakai: Superplasticity of Ceramics. Ceram. Int. 17 [3], 153–63 (1991)

    Article  CAS  Google Scholar 

  183. W.F. Smith: Principles of Materials Engineering. (McGraw-Hill New York, 1986)

    Google Scholar 

  184. S. Deng and R. Warren: Creep Properties of Single Crystal Oxides Evaluated by a Larson-Miller Procedure. J. Eur. Ceram. Soc. 15 [6], 513–520(1995)

    Article  Google Scholar 

  185. M.F. Ashby: A First Report on Deformation-Mechanism Maps. Acta Metall. 20 [7], 887–897 (1972)

    Article  CAS  Google Scholar 

  186. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps. (Pergamon Press Oxford England, 1982)

    Google Scholar 

  187. R.A. Verrall, R.J. Fields, and M.F. Ashby: Deformation Mechanism Maps for LiF and NaCl. J. Am. Ceram. Soc. 60 [5–6], 211–216 (1977)

    Article  CAS  Google Scholar 

  188. J.D. French, J. Zhao, M.P. Harmer, H.M. Chan, and G.A. Miller: Creep of Duplex Microstructures. J. Am. Ceram. Soc. 77 [11], 2857–2865 (1994)

    Article  CAS  Google Scholar 

  189. S. Suresh and J.R. Brockenbrough: A Theory for Creep by Interfacial Flaw Growth in Ceramics and Ceramic Composites. Acta Metall. 38 [1], 55–68(1990)

    Article  CAS  Google Scholar 

  190. M.R. Notis, R.H. Smoak, and V. Krishnamachari: Interpretation of Hot Pressing Kinetics by Densification Mapping Techniques. In: Materials Science Research, Vol.10: Sintering and Catalysis. G.C. Kuczynski (ed.). (Plenum Press New York, 1975), pp. 493–507

    Google Scholar 

  191. A.H. Chokshi and J.R. Porter: Creep Deformation of an Alumina Matrix Composite Reinforced with Silicon Carbide Whiskers. J. Am. Ceram. Soc. 68[6], C-144–145(1985)

    Article  Google Scholar 

  192. A.G. Evans and B.J. Dalgleish: Some Aspects of the High Temperature Performance of Ceramics and Ceramic Composites. In: Superalloys, Supercomposites, and Superceramics. J.K. Tien and T. Caulfield (eds.). (Academic Press San Diego CA, 1989), pp. 697–720

    Chapter  Google Scholar 

  193. J.M. Birch, B. Wilshire, and D.J. Godfey: Deformation and Fracture Processes During Creep of Reaction Bonded and Hot Pressed Silicon Nitride. Proc. Brit. Ceram. Soc. 25, 141–154 (1978)

    Google Scholar 

  194. S.M. Wiederhorn, D.E. Roberts, T.J. Chuang, and L. Chuck: Damage Enhanced Creep in a Siliconized Silicon Carbide: Phenomenology. J. Am. Ceram. Soc. 71 [7], 602–608 (1988)

    Article  CAS  Google Scholar 

  195. W.J. Kim, J. Wolfenstine, G. Frommeyer, O.A. Ruano, and O.D. Sherby: Superplastic Behavior of Iron Carbide. Scr. Metall. 23 [9], 1515–1520 (1989)

    Article  CAS  Google Scholar 

  196. I.-W. Chen and L.A. Xue: Development of Superplastic Structural Ceramics. J. Am. Ceram. Soc. 73 [9], 2585–2609 (1990)

    Article  CAS  Google Scholar 

  197. C.A. Johnson, R.C. Bradt, and J.H. Hoke: Transformational Plasticity in Bi 2 O 3 . J. Am. Ceram. Soc. 58 [1–2], 37–40 (1975)

    Article  CAS  Google Scholar 

  198. L.A. Xue and R. Raj: Superplastic Deformation of Zinc Sulfide Near its Transformation Temperature (1020°C). J. Am. Ceram. Soc. 72 [10], 1792–1796(1989)

    Article  CAS  Google Scholar 

  199. T.G. Langdon: Superplastic Ceramics, They’re Not A Stretch of the Imagination Anymore. JOM 42 [7], 8–13 (1990)

    Article  CAS  Google Scholar 

  200. S.L. Hwang and I.W. Chen: Superplastic Forming of SiAlON Ceramics. J. Am. Ceram. Soc. 77 [10], 2575–2585 (1994)

    Article  CAS  Google Scholar 

  201. R.W. Rice: Micromechanics of Microstructural Aspects of Ceramic Wear. Ceram. Eng. Sci. Proc. 6 [7–8], 940–958 (1985)

    Article  CAS  Google Scholar 

  202. C.A. Brookes and A.K. Parry: Some Fundamental Aspects of the Mechanical Wear of Hard Ceramic Crystals due to Sliding. Mater. Sci. Eng. A105/106, 143–150 (1988)

    Google Scholar 

  203. E.A. Almond: Overview: Indentation Phenomena and Wear of Surfaces and Edges. Mater. Sci. Tech. 2 [7], 641–646 (1986)

    Article  Google Scholar 

  204. J.R. Alcock and O.T. Sorensen: Slurry Abrasion Resistance of Engineering Ceramics. Br. Ceram. Trans. 95 [1], 30–34 (1996)

    CAS  Google Scholar 

  205. H. Kong and M.F. Ashby: Wear Mechanisms in Brittle Solids. Acta Metall. 40 [11], 2907–2920 (1992)

    Article  CAS  Google Scholar 

  206. D. Holz, R. Janssen, K. Friedrich, and N. Claussen: Abrasive Wear of Ceramic-Matrix Composites. J. Eur. Ceram. Soc. 5 [4], 229–232 (1989)

    Article  CAS  Google Scholar 

  207. M. Bohmer and E.A. Almond: Mechanical Properties and Wear Resistance of a Whisker-Reinforced Zirconia-Toughened Alumina. Mater. Sci. Eng. A105/106, 105–116 (1988)

    Google Scholar 

  208. F. Thevenot et P. Homerin: Composites Alumine-Zircone. In: Ceramiques Composites a Particules, Cas du Frittage-Reaction. F. Thevenot (ed.). (Forceram Editions Septima Paris France, 1992), pp. 39–60

    Google Scholar 

  209. C.Cm. Wu, R.W. Rice, C.P. Cameron, L.E. Dolhert, J.H. Enloe, and J. Block: Diamond Pin-On-Disk Wear of Al 2 O 3 Matrix Composites and Nonoxides. Ceram. Eng. Sci. Proc: 12 [7–8], 1485–1499 (1991)

    Article  CAS  Google Scholar 

  210. S.W. Lee, S.M. Hsu, and M.C. Shen: Ceramic Wear Maps: Zirconia. J. Am. Ceram. Soc. 76 [8], 1937–1947 (1993)

    Article  CAS  Google Scholar 

  211. C.M. Wu and R.W. Rice: Porosity Dependence of Wear and Other Mechanical Properties on Fine-Grain Al 2 O 3 and B 4 C Ceram. Eng. Sci. Proc. 6 [7–8], 995–1011 (1985)

    Article  CAS  Google Scholar 

  212. C.M. Wu, R.W. Rice, D. Johnson, and B.A. Platt: Grain Size Dependence of Wear in Ceramics. Ceram. Eng. Sci. Proc. 6 [7–8], 1012–1021 (1985)

    Google Scholar 

  213. M.G. Gee and E.A. Almond: Effects of Test Variables in Wear Testing of Ceramics. Mater. Sci. Tech. 4 [10], 877–884 (1988)

    Article  CAS  Google Scholar 

  214. S.M. Wiederhorn: Erosion of Ceramics. In: Proceedings of Corrosion/Erosion of Coal Conversion Systems Materials Conference. A.V. Levy (ed.). (National Association of Corrosion Engineering Houston TX, 1979), pp. 444–419

    Google Scholar 

  215. J.F. Vedder: Microcraters in Glass and Minerals. Earth Planet. Sci. Lett. 11 [3], 291–296 (1971)

    Article  CAS  Google Scholar 

  216. P.S. Follansbee, G.B. Sinclair, and J.C. Williams: Modeling of Low Velocity Particulate Erosion in Ductile Materials by Spherical Particles. Wear 74 [1], 107–122 (1981–82)

    Article  CAS  Google Scholar 

  217. K.G. Budinski: Engineering Materials. Reston Publishing Reston Virginia, 1983)

    Google Scholar 

  218. G.L. Sheldon and I. Finnie: On Ductile Behavior of Nominally Brittle Materials During Erosive Cutting. Trans ASME J. Eng. Ind. 88 [4], 387–392(1966)

    Article  CAS  Google Scholar 

  219. L. Murugesh, S. Srinivasan, and R.O. Scattergood: Models and Material Properties for Erosion of Ceramics. J. Mater. Eng. 13 [1], 55–61 (1991)

    Article  Google Scholar 

  220. A.G. Evans, M.E. Gulden, and M.E. Rosenblatt: Impact Damage in Brittle Materials in the Elastic-Plastic Response Regime. Proc. Roy. Soc. (London) A 361 [1706], 343–365 (1978)

    Google Scholar 

  221. J.E. Ritter: Erosion Damage in Structural Ceramics. Mater. Sci. Eng. 71, 195–201 (1985)

    Article  CAS  Google Scholar 

  222. S. Srinivasan and R.O. Scattergood: Erosion of Mg-PSZ by Solid Particle Impact. Adv. Ceram. Mater. 3 [4], 345–352 (1988)

    CAS  Google Scholar 

  223. J.L. Routbort: Erosion of Composite Ceramics. Ceram. Acta 6 [1], 5–13 (1994)

    Google Scholar 

  224. S. Wada: Effects of Hardness and Fracture Toughness of Target Materials and Impact Particles on Erosion of Ceramic Materials. Key Eng. Mater. 71, 51–74(1992)

    Article  CAS  Google Scholar 

  225. J.L. Routbort and R.O. Scattergood: Solid Particle Erosion of Ceramics and Ceramic Composites. Key Eng. Mater. 71, 23–50 (1992)

    Article  CAS  Google Scholar 

  226. S. Bugliosi, D. Cuppini, and G.E. D’Errico: Come Si Erodono I Ceramici Riv. Mecc. Oggi 11 [4], 43–47 (1996)

    Google Scholar 

  227. W.J. Tomlinson and S.J. Matthews: Cavitation Erosion of Structural Ceramics. Ceram. Intern. 20 [3], 201–209 (1994)

    Article  CAS  Google Scholar 

  228. D.D. Pollock: Physical Properties of Materials for Engineers, Vol.1 (CRC Press Boca Raton FL, 1984)

    Google Scholar 

  229. D.R. Gaskell: Introduction to Metallurgical Thermodynamics. (McGraw-Hill New York, 1981)

    Google Scholar 

  230. W.F. Hammetter: Thermophysical Properties. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 610–616

    Google Scholar 

  231. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott: Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. J. App. Phys. 32 [9], 1679–1684 (1961)

    Article  CAS  Google Scholar 

  232. R. Taylor: Construction of Apparatus for Heat Pulse Thermal Diffusivity Measurements from 300–3000 K. J. Phys. E: Sci. Instr. 13 [11], 1193–1199(1980)

    Article  CAS  Google Scholar 

  233. J.C. Anderson, K.D. Leaver, R.D. Rawlings, and J.M. Alexander: Materials Science. (Chapman Hall London, 1990)

    Google Scholar 

  234. G. Aliprandi and F. Savioli: Introduzione ai Ceramici Avanzati, Vol.1. (ENEA Rome, 1989)

    Google Scholar 

  235. L.H. Van Vlack: Physical Ceramics for Engineers. (Addison-Wesley Reading MA, 1964)

    Google Scholar 

  236. J. Franci, W.D. Kingery: Thermal Conductivity: IX, Experimental Investigation of Effect of Porosity on Thermal Conductivity. J. Am. Ceram. Soc. 37 [2], 99–107 (1954)

    Article  Google Scholar 

  237. G.S. Sheffield and J.R. Schorr: Comparison of Thermal Diffusivity and Thermal Conductivity Methods. Am. Ceram. Soc. Bull. 70 [1], 102–106 (1991)

    CAS  Google Scholar 

  238. D. Fournier, L. Portier, A.C. Boccara, G. Savignat, P. Boch, J. Poirier, G. Provost: Caratterizzazione Non-Distruttiva di Refrattari Tramite Tecniche Fototermiche. Ceramurgia 26 [2], 94–97 (1996)

    CAS  Google Scholar 

  239. A.W. Sleight: Isotropic Negative Thermal Expansion. Ann. Rev. Mater. Sci. 28, 29–43(1998)

    Article  CAS  Google Scholar 

  240. R.J. Beals and R.L. Cook: Directional Dilatation of Crystal Lattices at Elevated Temperatures. J. Am. Ceram. Soc. 40 [8], 279–284 (1957)

    Article  CAS  Google Scholar 

  241. J. Hlavac: The Technology of Glass and Ceramics. (Elsevier New York, 1983)

    Google Scholar 

  242. W.L. Wolfe: Properties of Optical Materials. In: Handbook of Optics. W.G. Driscoll and W. Vaughan (eds.). (Mc-Graw-Hill New York, 1978)

    Google Scholar 

  243. T.D. Taylor: Structure and Properties of Glasses. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 564–569

    Google Scholar 

  244. M.W. Barsoum: Fundamentals of Ceramics. (Mc-Graw-Hill New York, 1997)

    Google Scholar 

  245. Handbook of Optical Constants of Solids. E.D. Palik (ed.). (Academic Press Orlando FL, 1985)

    Google Scholar 

  246. CRC Handbook of Chemistry and Physics. R.C. Weast (ed.). (CRC Press Boca Raton FL, 1986)

    Google Scholar 

  247. M. Francon: Isotropic and Anisotropic Media, Application of Anisotropic Materials to Interferometry. In: Advanced Optical Techniques. A.C.S. Van Heel (ed.). (North Holland Amsterdam, 1967), pp. 23–70

    Google Scholar 

  248. G.R. Streatfield: Ceramic Color. Br. Ceram. Trans. J. 89 [5], 177–180 (1990)

    CAS  Google Scholar 

  249. Mastering Color, The Kodak Library of Creative Photography. (Kodak Mitchell Beazley Publishers-Salvat Editores Barcelona, 1985)

    Google Scholar 

  250. C. Kittel: Introduction to Solid State Physics (John Wiley &; Sons New York, 1986)

    Google Scholar 

  251. Solid State Physics Source Book. S.P. Parker (ed.). (McGraw-Hill New York, 1988)

    Google Scholar 

  252. C.C. Wang, S.A. Akbar, W. Chen, and V.D. Patton: Review: Electrical Properties of High-Temperature Oxides, Borides, Carbides, and Nitrides. J. Mater. Sci. 30 [7], 1627–1641 (1995)

    Article  CAS  Google Scholar 

  253. R.W. Schwartz: Electronic and Magnetic Ceramics. In: Characterization of Ceramics. R.E. Loehman (ed.). (Butterworth-Heinemann Stoneham MA, 1993)

    Google Scholar 

  254. D.D. Pollock: Electrical Conduction in Solids. (American Society for Metals Metals Park OH, 1985)

    Google Scholar 

  255. Ceramic Materials for Electronics. R.C. Buchanan (ed.). (Marcel Dekker New York, 1986)

    Google Scholar 

  256. A.J. Moulson and J.M. Herbert: Electroceramics. (Chapman & Hall London, 1990)

    Google Scholar 

  257. M. Ura: Ceramic Substrates. In: Fine Ceramics. S. Saito (ed.). (Elsevier Essex England, 1985), pp. 243–251

    Google Scholar 

  258. H.L. Tuller and P.K. Moon: Fast Ion Conductors: Future Trends. Mater. Sci. Eng. B1 [2], 171–191(1988)

    Article  CAS  Google Scholar 

  259. P. McGeehin and A. Hooper: Review: Fast Ion Conduction Materials. J. Mater. Sci. 12 [1], 1–27(1977)

    Article  CAS  Google Scholar 

  260. M. Nagai: Ionic Conductors. In: Fine Ceramics. S. Saito (ed.). (Elsevier Essex England, 1985), pp. 297–306

    Google Scholar 

  261. K. Onnes: Report on the Researches Made in the Leiden Cryogenic Laboratory Between the Second and Third International Congress of Refrigeration. Supp. 34 b (1913)

    Google Scholar 

  262. J.G. Bednorz and K.A. Müller: Possible High T c Superconductivity in the Ba-La-Cu-O System. Z. Phys. B. 64, 189–193 (1986)

    Article  CAS  Google Scholar 

  263. J.H. Sharp: A Review of the Crystal Chemistry of Mixed Oxide Superconductors. Br. Ceram. Trans. J. 89 [1], 1–7 (1990)

    CAS  Google Scholar 

  264. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, and C.W. Chu: Superconductivity at 93K in a New Mixed Phase Y-Ba-Cu-O Compound System at Ambient Pressure. Phys. Rev. Lett. 58 [9], 908–910 (1987)

    Article  CAS  Google Scholar 

  265. T.P. Sheahen: Introduction to High-Temperature Superconductivity. Plenum Press New York, 1994)

    Google Scholar 

  266. J.D. Doss: Engineer’s Guide to High-Temperature Superconductivity. (John Wiley & Sons New York, 1989)

    Google Scholar 

  267. D.M. Kroeger and A. Goyal: Overview: Critical Current and Microstructure in Oxide Superconductors. JOM 44 [10], 42–47 (1992)

    Article  CAS  Google Scholar 

  268. J. Bardeen, L.N. Cooper, and J.R. Schrieffer. Phys. Rev. 106, 162 (1957

    Article  CAS  Google Scholar 

  269. J. Bardeen, L.N. Cooper, and J.R. Schrieffer: Theory of Superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    Article  CAS  Google Scholar 

  270. P.B. Allen: Status of Theory for Superconductivity in the High-Tc Cuprates. In: High Temperature Superconductors II. D.W. Capone II, W.H. Butler, B. Batlogg, and C.W. Chu (eds.). (Materials Research Society Pittsburgh PA, 1988), pp. 3–5

    Google Scholar 

  271. D.O. Welch: Theoretical Questions Raised by High T c . JOM 40 [1], 8–9 (1988)

    Article  Google Scholar 

  272. A.M. Wolsky, R.F. Giese, and E.J. Daniels: The New Superconductors: Prospects for Applications. Sci. American Feb., 61–69 (1989)

    Google Scholar 

  273. D. Larbalestier, G. Fisk, B. Montgomery, and D. Hawkswoth. High-Field Superconductivity. Physics Today March, 24–33 (1986)

    Google Scholar 

  274. J. Narayan: Microstructure and Properties of High T c Superconductors. JOM 41 [1], 18–23(1989)

    Article  CAS  Google Scholar 

  275. R. Ramesh, A. Inam, T. Sands, and C.T. Rogers: Thin Film Y-Ba-Cu-O High T c Superconductors: Structure-Property Relationships. Mater. Sci. Eng. B14 [2], 188–213(1992)

    Article  CAS  Google Scholar 

  276. V.Z. Kresin and S.A. Wolf: Fundamentals of Superconductivity. (Plenum Press New York, 1990)

    Google Scholar 

  277. H.K. Liu, S.X. Dou, A.J. Bourdillon, and C.C. Sorrell: A Comparison of the Stability of Bi 2 Sr 2 CaCu 2 O 8+y with YBa 2 Cu 3 O 6.5+y in Various Solutions. Supercond. Sci. Technol. 1, 194–197 (1988)

    Article  CAS  Google Scholar 

  278. Z.Z. Sheng and A.M. Hermann: Superconductivity in the Rare-Earth Free Tl-Ba-Cu-O System Above Liquid Nitrogen Temperature. Nature (London) 332 [6159], 138–141 (1988)

    Article  CAS  Google Scholar 

  279. U. Chowdry and A.W. Sleight: Ceramic Substrates for Microelectronic Packaging. Ann. Rev. Mater. Sci. 17, 323–340 (1987)

    Article  Google Scholar 

  280. L. Solymar and D. Walsh: Lectures on the Electrical Properties of Materials. (Oxford University Press Oxford England, 1984)

    Google Scholar 

  281. W. Heywang and H. Thormann: Tailoring of Piezoelectric Ceramics. Ann. Rev. Mater. Sci. 14, 27–47 (1987)

    Article  Google Scholar 

  282. S. Nanamatsu, M. Kimura, K. Doe, S. Matsushita, and N. Yamada: A New Ferroelectric: La 2 Ti 2 O 7 . Ferroelectrics 8, 511–513 (1974)

    Article  CAS  Google Scholar 

  283. M. Serridge and T.R. Licht: Piezoelectric Accelerometer and Vibration Preamplifier Handbook. (Brüel &; Kjaer Naerum Denmark, 1987)

    Google Scholar 

  284. T. Mitsui, I. Tatsuzaki, and E. Nakamura: An Introduction to the Physics of Ferroelectrics. (Gordon and Breach New York, 1976)

    Google Scholar 

  285. M.E. Lines and A.M. Glass: Principles and Applications of Ferroelectrics and Related Materials. (Oxford University Press Oxford England, 1979)

    Google Scholar 

  286. B.M. Park and S J. Chung: Optical, Electron Microscopic, and X-Ray Topographic Studies of Ferroic Domains in Barium Titanate Crystals Grown from High Temperature Solution. J. Am. Ceram. Soc. 77 [12], 3193–3201(1994)

    Article  CAS  Google Scholar 

  287. Y. Furuhata and G. Toda: Ferroelectric and Electrooptic Materials. In: Fine Ceramics. S. Saito (ed.). (Elsevier Essex England, 1985), pp. 261–275

    Google Scholar 

  288. J.C. Burfoot and G.W. Taylor: Polar Dielectrics. (University of California Berkeley CA, 1979)

    Google Scholar 

  289. G.H. Haertling: Electro-Optic Ceramics and Devices. In: Electronic Ceramics. L.M. Levinson (ed.). (Marcel Dekker New York, 1988), pp. 371–492

    Google Scholar 

  290. F.E. Luborsky, J.D. Livingston, and G.Y. Chin: Magnetic Properties of Metals and Alloys. In: Physical Metallurgy Part II. R.W. Cahn and P. Haasen (eds.). (North Holland Amsterdam Holland, 1983)

    Google Scholar 

  291. Physical Metallurgy. R.W. Cahn and P. Haasen (eds.). (North Holland Amsterdam Holland, 1983)

    Google Scholar 

  292. R.W. Hanks: Materials Engineering Science, An Introduction. Harcourt Brace & World New York, 1970)

    Google Scholar 

  293. L.M. Sheppard: Corrosion-Resistant Ceramics for Severe Environments. Am. Ceram. Soc. Bull. 70 [7], 1146–1166 (1991)

    Google Scholar 

  294. Y. Hara: Application of Fine Ceramics in Industrial Fields. Corros. Eng. 38 [7], 527–537 (1989)

    Google Scholar 

  295. W.B. White: Theory of Corrosion of Glass and Ceramics. In: Corrosion of Glass, Ceramics and Ceramic Superconductors. D.E. Clark and B.K. Zoitos (eds.). (Noyes Park Ridge NJ, 1992), pp. 2–50

    Google Scholar 

  296. R. Divakar, S.G. Seshadri, and M. Srinivasan: Electromechanical Techniques for Corrosion Rate Determination in Ceramics. J. Am. Ceram. Soc. 72 [5], 780–784 (1989)

    Article  CAS  Google Scholar 

  297. J.P. Day: A Study of the Chemical Reactivity in Ceramic Heat Exchangers. Trans. ASME A 101 [2], 270–274 (1979)

    Article  CAS  Google Scholar 

  298. R.H. Jones, C.H. Henager, Jr., P.P. Trzaskoma, N.S. Stoloff, T.P. Moffat, and B.D. Lichter: Environmental Effects on Advanced Materials. JOM 40 [12], 18–30(1988)

    Article  CAS  Google Scholar 

  299. T.A. Michalske, B.C. Bunker, and S.W. Freiman: Stress Corrosion of Ionic and Mixed Ionic/Covalent Solids. J. Am. Ceram. Soc. 69 [10], 721–724(1986)

    Article  CAS  Google Scholar 

  300. A.G. Metcalfe and G.K. Shmitz: Mechanisms of Stress Corrosion in E Glass Filaments. Glass Tech. 13 [1], 5–16 (1972)

    CAS  Google Scholar 

  301. H.C. Cao, B.J. Dalgleish, C.H. Hsueh, and A.G. Evans: High-Temperature Stress Corrosion Cracking in Ceramics. J. Am. Ceram. Soc. 70 [4], 257–264 (1987).

    Article  CAS  Google Scholar 

  302. G. Choi and S. Horibe: The Environmental Effect on Cyclic Fatigue Behavior in Ceramic Materials. J. Mater. Sci. 30 [6], 1565–1569 (1995)

    Article  CAS  Google Scholar 

  303. A.H. Heuer and V.L.K. Lou: Volatility Diagrams for Silica, Silicon Nitride, and Silicon Carbide and their Application to High-Temperature Decomposition and Oxidation. J. Am. Ceram. Soc. 73 [10], 2789–2803 (1990)

    Article  Google Scholar 

  304. F. Bregani: Corrosione ad Alta Temperatura di Materiali e Rivestimenti Ceramici. Ceramurgia 24 [4], 151–162 (1994)

    CAS  Google Scholar 

  305. W. Genthe and H. Hausner: Corrosion of Aluminum Oxide in Acids and Caustic Solutions. Ceram. Forum Int. 67 [1/2], 6–10 (1990)

    CAS  Google Scholar 

  306. T. Sato, K. Haryu, T. Endo, and M. Shimada: High Temperature Oxidation of Hot-Pressed Aluminum Nitride by Water Vapor. J. Mater. Sci. 22 [6], 2277–2280 (1987)

    Article  CAS  Google Scholar 

  307. P.T.B. Shaffer and T.J. Mroz: Aluminum Nitride. In: Handbook of Advanced Ceramic Materials. (Advanced Refractory Technologies Buffalo NY, 1993)

    Google Scholar 

  308. E.L. Courtright: Engineering Property Limitations of Structural Ceramics and Ceramic Composites above 1600°C Ceram. Eng. Sci. Proc. 12 [9–10], 1725–1744(1991)

    Article  CAS  Google Scholar 

  309. A. Lipp, K.A. Schwetz, and K. Hunold: Hexagonal Boron Nitride: Fabrication, Properties, and Applications. J. Eur. Ceram. Soc. 5 [1], 3–9 (1989)

    Article  CAS  Google Scholar 

  310. P.T.B. Shaffer and A. Goel: Silicon Nitride. In: Handbook of Advanced Ceramic Materials. (Advanced Refractory Technologies Buffalo NY, 1993)

    Google Scholar 

  311. T. Sato, Y. Kanno, T. Endo: Corrosion of SiC, Si 3 N 4 , and AlN in Molten K 2 SO 4 and K 2 CO 3 Salts. Yogyo Kyokaishi 94 [1], 123–128 (1986)

    CAS  Google Scholar 

  312. M.E. Gulden and A.G. Metcalf: Stress Corrosion of Silicon Nitride. J. Am. Ceram. Soc. 59 [9–10], 391–396 (1976)

    Article  CAS  Google Scholar 

  313. N.J. Tinghe, J. Son, and R.M. Hu: Corrosion Reactions in SiC Ceramics. Ceram. Eng. Sci. Proc. 8 [7–8], 505–511 (1987)

    Google Scholar 

  314. D.W. McKee and D. Chatterji: Corrosion of Silicon Carbide in Gases and Alkaline Melts. J. Am. Ceram. Soc. 59 [9–10], 441–444 (1976)

    Article  CAS  Google Scholar 

  315. G.W. Hallum and T.P. Herbell: Effect of High-Temperature Hydrogen Exposure on Sintered a-SiC Adv. Ceram. Mater. 3 [2], 171–175 (1988)

    CAS  Google Scholar 

  316. G.I. Rudd, S.H. Garofalini, and D.A. Hensley: Atomic Force Microscopy and X-Ray Photoelectron Spectroscopy Investigation of the Onset of Reactions on Alkali Silicate Glass Surfaces. J. Am. Ceram. Soc. 76 [10], 2555–2560(1995)

    Article  Google Scholar 

  317. L. Holland: The Properties of Glass Surfaces. (Chapman & Hall London, 1966)

    Google Scholar 

  318. ASTM standard C225–85 (1990 Vol. 15.02)

    Google Scholar 

  319. ASTM standard C724–81 (1988 Vol. 15.02)

    Google Scholar 

  320. ASTM standard C650–83 (1988 Vol. 15.02)

    Google Scholar 

  321. D.E. Clark and B.K. Zoitos: Corrosion Testing and Characterization. In: Corrosion of Glass, Ceramics and Ceramic Superconductors. D.E. Clark and B.K. Zoitos (eds.). (Noyes Park Ridge NJ, 1992), pp. 51–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bengisu, M. (2001). Properties of Ceramic Materials and Their Evaluation. In: Engineering Ceramics. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04350-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04350-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08719-6

  • Online ISBN: 978-3-662-04350-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics