Properties of Ceramic Materials and Their Evaluation

  • Murat Bengisu
Part of the Engineering Materials book series (ENG.MAT.)


The mechanical properties of a ceramic material must be thoroughly studied before it is considered for any application that imparts certain stresses. Mechanical properties such as hardness, strength, elastic modulus, and fracture toughness are key properties in a ceramic material’s performance. Fatigue behavior is important when cyclic stresses are present. At elevated temperatures, the creep behavior of a ceramic is of utmost importance. Erosion and wear phenomena are system-specific. A ceramic component’s erosion and wear behavior have to be known especially if the component comes into contact with other solids, liquids, and high pressure gases. Any combination of fatigue, creep, erosion, wear, and corrosion phenomena is possible, which may complicate the analysis of material response under those circumstances. This chapter describes the mechanical properties of ceramic materials and their evaluation, in general, with some specific examples.


Fracture Toughness Ceramic Material Creep Rate Strain Energy Release Rate Weibull Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [4.1]
    B.W. Mott: Micro-Indentation Hardness Testing. (Butterworths Scientific London, 1956)Google Scholar
  2. [4.2]
    M.A. Meyers and K.K. Chawla: Mechanical Metallurgy. (Prentice-Hall Englewood Cliffs NJ, 1984)Google Scholar
  3. [4.3]
    M.L. Cohen: Calculation of Bulk Moduli of Diamond and Zincblende Solids. Phys. Rev. B 32 [12], 7988–7991 (1985)CrossRefGoogle Scholar
  4. [4.4]
    M.R. Wixom: Chemical Preparation and Shock Wave Compression of Carbon Nitride Precursors. J. Am. Ceram. Soc. 73 [7], 1973–1978 (1990)CrossRefGoogle Scholar
  5. [4.5]
    D.W. Richerson: Modern Ceramic Engineering. (Marcel Dekker New York, 1982)Google Scholar
  6. [4.6]
    A.Y. Liu and M.L. Cohen: Prediction of New Low Compressibility Solids. Science 245, 841–842 (1989)CrossRefGoogle Scholar
  7. [4.7]
    W.E. Lee and W.M. Rainforth: Ceramic Microstructures. (Chapman & Hall London, 1994)Google Scholar
  8. [4.8]
    R. Warren and V.K. Sarin: Particulate Ceramic-Matrix Composites. In: Ceramic Matrix Composites. R. Warren (ed.). (Blackie and Son London, 1992), pp. 146–166Google Scholar
  9. [4.9]
    E. Scafe, L. Fabbri, G. Grillo, and L. di Rese: Improved Technique for Young’s Modulus Determination by Flexural Resonance. Ceram. Eng. Sci. Proc. 13 [9–10], 1094–1102 (1992)Google Scholar
  10. [4.10]
    J. Krautkrämer and H. Krautkrämer: Ultrasonic Testing of Materials. (Springer-Verlag Berlin, 1990)CrossRefGoogle Scholar
  11. [4.11]
    J.N. Adami, D. Bolsch, J. Bressers, E. Fenske, and M. Steen: Uniaxial Tension and Cyclic Tension-Compression Testing of Ceramics. J. Eur. Ceram. Soc. 7 [4], 227–236 (1991)CrossRefGoogle Scholar
  12. [4.12]
    G. Higgins, B. O’Brien, and A. Sun Wai: Mechanical Testing of Ceramics and Ceramic Matrix Composites: An Overview. Key Eng. Mater. 72–74, 551–568 (1992)CrossRefGoogle Scholar
  13. [4.13]
    D.C. Larsen and S.L. Stuchly: The Mechanical Evaluation of Ceramic Fiber Composites. In: Fiber Reinforced Ceramic Composites. K.S. Mazdiyasni (ed.). (Noyes Park Ridge NJ, 1990)Google Scholar
  14. [4.14]
    R. Morrell: Mechanical Test Methods for Ceramic Matrix Composites. Brit. Ceram. Trans. 94 [1], 1–9 (1995)Google Scholar
  15. [4.15]
    H.P. Kirchner: Strengthening of Ceramics. (Marcel Dekker New York, 1979)Google Scholar
  16. [4.16]
    J. Mencik: Glass Science and Technology 12: Strength and Fracture of Glass and Ceramics. (Elsevier Amsterdam Holland, 1992)Google Scholar
  17. [4.17]
    G.D. Quinn: Strength and Proof Testing. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 585–598Google Scholar
  18. [4.18]
    S.M. Wiederhorn: In :Fracture of Ceramics. In: Mechanical and Thermal Properties of Ceramics. J.B. Wachtman, Jr. (ed.). (National Bureau of Standards Special Publication 303, May 1969), pp. 217–240Google Scholar
  19. [4.19]
    A.A. Griffith: The Phenomena of Rupture and Flow in Solids. Philos. Trans. R. Soc. (London) A 221, 163–198 (1920)CrossRefGoogle Scholar
  20. [4.20]
    G.C. Eckold: Structural Design with Advanced Ceramics. In: Ceramic Matrix Composites. R. Warren (ed.). (Blackie and Son Glasgow Scotland, 1992), pp. 115–144Google Scholar
  21. [4.21]
    W. Weibull: Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 18 [3], 293–297 (1951)Google Scholar
  22. [4.22]
    S. Van der Zwaag: The Concept of Filament Strength and the Weibull Modulus. J. Test. Eval. 17 [5], 292–298 (1989)CrossRefGoogle Scholar
  23. [4.23]
    D.G. Raheja: Assurance Technologies. (McGraw-Hill New York, 1991)Google Scholar
  24. [4.24]
    S.L. Fok and J. Smart: The Accuracy of Failure Predictions Based on Weibull Statistics. J. Eur. Ceram. Soc. 15 [9], 905–908 (1995)CrossRefGoogle Scholar
  25. [4.25]
    M. Sutcu: Weibull Statistics Applied to Fiber Failure in Ceramic Composites and Work of Fracture. Acta Metall. 37 [2], 651–661 (1989)CrossRefGoogle Scholar
  26. [4.26]
    R.W. Davidge: Engineering Performance Prediction for Ceramics. Mater. Sci. Tech. 2 [9], 902–909 (1986)CrossRefGoogle Scholar
  27. [4.27]
    J. Lamon: Statistical Approaches to Failure for Ceramic Reliability Assesment. J. Am. Ceram. Soc. 71 [2], 106–112 (1988)CrossRefGoogle Scholar
  28. [4.28]
    S. Ito and H. Okuda: Evaluation of Some Ceramics: Silicon Nitride, Silicon Carbide, and Zirconia. In: Fine Ceramics. S. Saito (ed.). (Elsevier Essex England, 1985), pp. 218–226Google Scholar
  29. [4.29]
    R.W. Davidge: Mechanical Behavior of Ceramics. (Cambridge University Press Cambridge England, 1979)Google Scholar
  30. [4.30]
    A.G. Evans and R.W. Davidge: Strength and Fracture of Stoichiometric Polycrystalline UO 2. J. Nucl. Mater. 33 [3], 249–260 (1969)CrossRefGoogle Scholar
  31. [4.31]
    H. Salmang and H. Scholze: Keramik. (Springer-Verlag Berlin, 1982)CrossRefGoogle Scholar
  32. [4.32]
    T.A. Michalske and B.C. Bunker: Slow Fracture Model Based on Strained Silicate Structures J. Appl. Phys. 56 [10], 2686–2693 (1984)CrossRefGoogle Scholar
  33. [4.33]
    R.N. Katz, G.D. Quinn, and E.M. Lenoe: High Temperature Static Fatigue in Ceramics. In: Fatigue, Environment, and High Temperature Effects. (Plenum Press New York, 1983), pp. 221–230Google Scholar
  34. [4.34]
    F.F. Lange, B.I. Davis, and M.G. Metcalf: Strengthening of Polyphase Materials Through Oxidation. J. Mater. Sci. 18 [5], 1497–1505 (1983)CrossRefGoogle Scholar
  35. [4.35]
    J.L. Smialek and N.S. Jacobson: Mechanism of Strength Degradation for Hot Corrosion ofa-SiC. J. Am. Ceram. Soc. 69 [101], 741–752 (1986)CrossRefGoogle Scholar
  36. [4.36]
    N. Claussen: Fracture Toughness of Al 2 O 3 with an Unstabilized ZrO 2 Dispersed Phase. J. Am. Ceram. Soc. 59 [1–2], 49–51 (1976)CrossRefGoogle Scholar
  37. [4.37]
    N. Claussen: Stress-Induced Transformations of Tetragonal ZrO 2 Particles in Ceramic Matrices. J. Am. Ceram. Soc. 61 [1–2], 85–86 (1978)CrossRefGoogle Scholar
  38. [4.38]
    D.J. Green, R.H.J. Hannink, and M.D. Swain: Transformation Toughening of Ceramics. (CRC Press Boca Raton FL, 1989)Google Scholar
  39. [4.39]
    D.B. Marshall and J.E. Ritter: Reliability of Advanced Structural Ceramics and Ceramic Matrix Composites-A Review. Am. Ceram. Soc. Bull. 66 [2], 309–17 (1987)Google Scholar
  40. [4.40]
    R.A. Cutler, R.J. Mayhew, K.M. Prettyman, and A.V. Virkar: High Toughness Ce-TZP/Al203 Ceramics with Improved Hardness and Strength J. Am. Ceram. Soc. 74 [1], 179–186 (1991)CrossRefGoogle Scholar
  41. [4.41]
    Y.G. Gogotsi: Review: Particulate Silicon Nitride Based Composites. J. Mater. Sci. 29 [10], 2541–2556 (1994)CrossRefGoogle Scholar
  42. [4.42]
    R.K. Bordia and R. Raj: Analysis of Sintering of a Composite with a Glass or Ceramic Matrix. J. Am. Ceram. Soc. 69 [3], C-55–57 (1986)CrossRefGoogle Scholar
  43. [4.43]
    K. Niihara, A. Nakahira, T. Uchiyama, and T. Hirai: High-Temperature Mechanical Properties of Al 2 O 5 -SiC Composites. In: Fracture Mechanics of Ceramics, Vol.7. R.C. Bradt, A.G. Evans, D.P.H. Hasselman, and F.F. Lange (eds.). (Plenum Press New York, 1986), pp. 103–106CrossRefGoogle Scholar
  44. [4.44]
    T. Zambetakis, J.L. Guille, B. Willer, and M. Daire: Mechanical Properties of Pressure-Sintered Al 2 O 3 -ZrC Composites. J. Mater. Sci. 22, 1135–1140(1987)CrossRefGoogle Scholar
  45. [4.45]
    S.J. Burden: Ceramic Cutting Tools. Ceram. Eng. Sci. Proc. 3 [7–8], 351–359(1982)CrossRefGoogle Scholar
  46. [4.46]
    D. Baril and M.K. Jain: Evaluation of SiC Platelets as a Reinforcement for Oxide Matrix Composites. Ceram. Eng. Sci. Proc. 12 [7–8], 1175–1192(1991)CrossRefGoogle Scholar
  47. [4.47]
    G.H. Beall: Design of Glass-Ceramics. Rev. Sol. State Sci. 3 [3–4], 333–354(1989)Google Scholar
  48. [4.48]
    R.R. Tummala and A.L. Friedberg: Strength of Glass-Crystal Composites. J. Am. Ceram. Soc. 52 [4], 228–229 (1969)CrossRefGoogle Scholar
  49. [4.49]
    W.J. Frey and J.D. Mackenzie: Mechanical Properties of Selected Glass-Crystal Composites. J. Mater. Sci. 2 [1], 124–130 (1967)CrossRefGoogle Scholar
  50. [4.50]
    J. Homeny and W.L. Vaughn: Whisker-Reinforced Ceramic Matrix Composites. MRS Bull. 12 [7], 66–71 (1987)Google Scholar
  51. [4.51]
    K. Xia and T.G. Langdon: Review: The Toughening and Strengthening of Ceramic Materials Through Discontinuous Reinforcement. J. Mater. Sci. 29 [20], 5219–5231 (1994)CrossRefGoogle Scholar
  52. [4.52]
    R. Warren: Fundamental Aspects of the Properties of Ceramic-Matrix Composites. In: Ceramic Matrix Composites. R. Warren (ed.). (Blackie and Son London, 1992), pp. 64–111Google Scholar
  53. [4.53]
    K.K. Chawla: Composite Materials. (Springer-Verlag New York, 1987)Google Scholar
  54. [4.54]
    B. Budiansky, J.W. Hutchinson, and A. Evans: Matrix Fracture in Fiber-Reinforced Ceramics. J. Mech. Phys. Solids. 34 [2], 167–189 (1986)CrossRefGoogle Scholar
  55. [4.55]
    W.B. Hillig: Strength and Toughness of Ceramic Matrix Composites. Ann. Rev. Mater. Sci. 17, 341–383 (1987)CrossRefGoogle Scholar
  56. [4.56]
    J. Aveston, G.A. Cooper, and A. Kelly: Single and Multiple Fracture. In: Proceedings of the Conference on the Properties of Fiber Composites. (IPC Science &; Technology Press Surrey England, 1971), pp. 15–26Google Scholar
  57. [4.57]
    D.B. Marshall, B.N. Cox, and A.G. Evans: The Mechanics of Matrix Cracking in Brittle-Matrix Fiber Composites. Acta Metall. 33 [11], 2013–2021 (1985)CrossRefGoogle Scholar
  58. [4.58]
    R.W. Davidge and J.J.R. Davies: Ceramic Matrix Fiber Composites: Mechanical Testing and Performance. Int. J. High Tech. Ceramics. 4 [2–4], 341–358(1988)CrossRefGoogle Scholar
  59. [4.59]
    M. Sutcu: Statistical Fiber Failure and Single Crack Behavior in Uniaxially Reinforced Ceramic Composites. J. Mater. Sci. 23 [3], 928–933(1988)CrossRefGoogle Scholar
  60. [4.60]
    M.D. Thouless and A.G. Evans: Effects of Pull-Out on the Mechanical Properties of Ceramic Matrix Composites. Acta Metall. 36 [3], 517–522 (1988)CrossRefGoogle Scholar
  61. [4.61]
    M.D. Thouless, O. Sbaizero, L.S. Sigl, and A.G. Evans: Effect of Interface Mechanical Properties on Pullout in a SiC-Fiber-Reinforced Lithium Aluminum Silicate Glass Ceramic. J. Am. Ceram. Soc. 72 [4], 525–532(1989)CrossRefGoogle Scholar
  62. [4.62]
    A.G. Evans and D.B. Marshall: The Mechanical Behavior of Ceramic Matrix Composites. Acta Metall. 37 [10], 2567–2583 (1989)CrossRefGoogle Scholar
  63. [4.63]
    K.M. Knowles and X.F. Yang: Mathematical Modeling of the Strength and Toughness of Unidirectional Fiber-Reinforced Ceramics. Ceram. Eng. Sci. Proc. 12 [7–8], 1375–1388 (1991)CrossRefGoogle Scholar
  64. [4.64]
    S. Kimura and E. Yasuda: Fabrication and Properties of Carbon/Carbon Composites. In: Fine Ceramics. S. Saito (ed.). (Elsevier Essex England, 1985), pp. 205–211Google Scholar
  65. [4.65]
    L.L. Hench: Bioceramics: From Concept to Clinic. J. Am. Ceram. Soc. 74 [7], 1487–1510(1991)CrossRefGoogle Scholar
  66. [4.66]
    E. Fitzer Structure and Strength of Carbon—Carbon Composites. J. App. Phys. D 14 [3], 347 (1981)CrossRefGoogle Scholar
  67. [4.67]
    S. Takano, T. Kinjo, T. Uruno, T. Tlomak, and C.P. Ju: Investigation of Process-Structure Performance Relationship of Unidirectionally Reinforced Carbon-Carbon Composites. Ceram. Eng. Sci. Proc. 12 [9–10], 1914–1930(1991)CrossRefGoogle Scholar
  68. [4.68]
    G. Ziegler and W. Huttner: Engineering Properties of Carbon-Carbon and Ceramic-Matrix Composites. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991) p. 836Google Scholar
  69. [4.69]
    R. Naslain: Fibrous Ceramic-Ceramic Composites, Processing and Properties. In: Thirteenth International Conference on Science of Ceramics. P. Odier, F. Cabannes, and B. Cales. (Les Editions de Physique Cedex France, 1986), pp. C1–703–715Google Scholar
  70. [4.70]
    P. Barron-Antolin, G.H. Schiroky, and C.A. Andersen: Properties of Fiber-Reinforced Alumina Matrix Composites. Ceram. Eng. Sci. Proc. 9 [7–8], 759–766(1988)CrossRefGoogle Scholar
  71. [4.71]
    R.N. Singh and A.R. Gaddipati: Mechanical Properties of a Uniaxially Reinforced Mullite-Silicon Carbide Composite. J. Am. Ceram. Soc. 71 [2], C-100–103(1988)CrossRefGoogle Scholar
  72. [4.72]
    D.P. Stinton, A.J. Caputo, and R.A. Lowden: Synthesis of Fiber Reinforced SiC Composites by Chemical Vapor Infiltration. Am. Ceram. Soc. Bull. 65 [2], 347–350 (1986)Google Scholar
  73. [4.73]
    E. Fitzer, D. Hegen, and H. Strohmeier: Possibility of Gas Phase Impregnation with Silicon Carbide. Rev. Int. Hautes Temp. Refract. 17 [11], 23–32(1980)Google Scholar
  74. [4.74]
    B.F. Sorensen and R. Talreja: Toughness of Damage Tolerant Continuous Fiber Reinforced Ceramic Matrix Composites. J. Eur. Ceram. Soc. 15 [11], 1047–1059 (1995)CrossRefGoogle Scholar
  75. [4.75]
    S. Freiman: Brittle Fracture Behavior of Ceramics. Am. Ceram. Soc. Bull. 67 [2], 392–402 (1988)Google Scholar
  76. [4.76]
    H.L. Ewalds and R.J.H. Wanhill: Fracture Mechanics. (Edward Arnold London and Delftse Uitgevers Maatschappij b.v. Delft Netherlands, 1985)Google Scholar
  77. [4.77]
    G. Vekinis, M.F. Ashby, and P.W.R. Beaumont: R-Curve Behavior of Al 2 O 3 Ceramics. Acta Metall. 38 [6], 1151–1162 (1990)CrossRefGoogle Scholar
  78. [4.78]
    S.D. Conzone, W.R. Blumenthal, and J.R. Varner: Fracture Toughness of TiB 2 and B 4 C Using the Single Edge Preckracked Beam, Indentation Strength, Chevron Notched Beam, and Indentation Strength Methods. J. Am. Ceram. Soc. 78 [8], 2187–2192 (1995)CrossRefGoogle Scholar
  79. [4.79]
    K.E. Amin: Toughness, Hardness, and Wear. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 599–609Google Scholar
  80. [4.80]
    L.M. Barker: Short Rod K Ic Measurements of Al 2 O 3 In: Fracture Mechanics of Ceramics, Vol.3. (R.O Bradt, D.P.H. Hasselman, and F.F. Lange (eds.). (Plenum Press New York, 1978), pp. 483–494Google Scholar
  81. [4.81]
    K.P.R. Reddy, E.H. Fontana, and J.D. Helfinstine: Fracture Toughness Measurement of Glass and Ceramic Materials Using Chevron-Notched Specimens. J. Am. Ceram. Soc. 71 [6], C-310–313 (1988)CrossRefGoogle Scholar
  82. [4.82]
    D. Munz, R.T. Bubsey, and J.L. Shannon, Jr.: Fracture Toughness Determination of Al 2 O 3 Using Four-Point-Bend Specimens with Straight- Through and Chevron Notches. J. Am. Ceram. Soc. 63 [5–6], 300–305 (1980)CrossRefGoogle Scholar
  83. [4.83]
    C. Rief and K. Kromp: Fracture Toughness Testing. Int. J. High. Tech. Ceram. 4 [2–4], 301–317 (1988)CrossRefGoogle Scholar
  84. [4.84]
    G. Orange, H. Tanaka, and G. Fantozzi: Fracture Toughness of Pressureless Sintered Silicon Carbide: A Comparison of K Ic Measurement Methods. Ceram. Int. 13 [3], 159–165 (1987)CrossRefGoogle Scholar
  85. [4.85]
    G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall: A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness:!, Direct Crack Measurement. J. Am. Ceram. Soc. 64 [9], 533–538(1981)CrossRefGoogle Scholar
  86. [4.86]
    C.B. Ponton and R.D. Rawlings: Vickers Indentation Fracture Toughness Part I, Review of Literature and Formulation of Standardized Indentation Toughness Equations. Mater. Sci. Tech. 5 [9], 865–872 (1989)CrossRefGoogle Scholar
  87. [4.87]
    R.F. Krause, Jr: Rising Fracture Toughness from the Bending Strengths of Indented Alumina Beams J. Am. Ceram. Soc. 71 [5], 338–343 (1988)CrossRefGoogle Scholar
  88. [4.88]
    S. Srinivasan and R.D. Scattergood: R-Curve Measurements in PSZ Ceramics. J. Mater. Res. 5 [7], 1490–1495 (1990)CrossRefGoogle Scholar
  89. [4.89]
    R.M. Anderson and L.M. Braun: Technique for the R-Curve Determination of Y-TZP Using Indentation-Produced Flaws. J. Am. Ceram. Soc. 73 [10], 3059–3062 (1990)CrossRefGoogle Scholar
  90. [4.90]
    P. Chantikul, G.R. Anstis, B.R. Lawn, and D.B. Marshall: A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness:II, Strength Method. J. Am. Ceram. Soc. 64 [9], 539–543 (1981)CrossRefGoogle Scholar
  91. [4.91]
    M.V. Swain and N. Claussen: Comparison of K Ic Values for Al 2 Or-ZrO 2 Composites Obtained from Notched-Beam and Indentation Strength Techniques. J. Am. Ceram. Soc. 66 [2], C-27–29 (1983)CrossRefGoogle Scholar
  92. [4.92]
    R.von Mises: Mechanik der Festen Korper im Plastich Deformablen Zustand. Nachr. Ges. Wiss. Göttingen 582, (1913)Google Scholar
  93. [4.93]
    E.A. Barringer and H.K. Bowen: Ceramic Powder Processing. Ceram. Eng. Sci. Proc. 5 [5–6], 285–297 (1984)CrossRefGoogle Scholar
  94. [4.94]
    G.C. Garvie, R.H.J. Hannink, and R.T. Pascoe: Ceramic Steel? Nature, London, 258 [5537], 703–704 (1975)CrossRefGoogle Scholar
  95. [4.95]
    W.R. deBoskey and H. Hahn: Opaque Lightweight Armor-Final Report. (Defense Technical Information Center Report AD822526, November 1967)Google Scholar
  96. [4.96]
    N. Tamari, T. Ogura, M. Kinoshita, and Y. Toibana: Fabrication of SiC Whisker-Si 3 N 4 Composite Materials and their Physical Properties. Bulletin of the Government Industrial Research Institute Osaka Japan, 33 [2], 129–134(1982)Google Scholar
  97. [4.97]
    R.A.J. Sambell, D.H. Bowen, and D.C. Phillips: Carbon Fiber Composites with Ceramic and Glass Matrices, Part I: Discontinuous Fibers. J. Mater. Sci., 7 [6], 663–673 (1972)CrossRefGoogle Scholar
  98. [4.98]
    E. Fitzer: In Fiber Reinforced Ceramic Composites. Whisker and Fiber Toughened Ceramics. R.A. Bradley, D.E. Clark, D.C. Larsen, and J.O. Stiegler (eds.). (The American Society for Metals Metals Park OH, 1989), pp. 165–192Google Scholar
  99. [4.99]
    R.T. Bhatt: The Properties of Silicon Carbide Fiber Reinforced Silicon Nitride Composites. In: Whisker and Fiber Toughened Ceramics. R.A. Bradley, D.E. Clark, D.C. Larsen, and J.O. Stiegler (eds.). (The American Society for Metals Metals Park OH, 1989), pp. 199–207Google Scholar
  100. [4.100]
    R.R. Wahi and B. Ilschner: Fracture Behavior of Composites Based on Al 2 O 3 -TiC J. Mater. Sci. 15 [4], 875–885 (1980)CrossRefGoogle Scholar
  101. [4.101]
    T.I. Mah and M.G. Mendiratta: Fracture Toughness and Strength of Si 3 N 4 -TiC Composites. Am. Ceram. Soc. Bull. 60 [11], 1229–1240 (1981)Google Scholar
  102. [4.102]
    S.T. Buljan, J.G. Baldoni, and M.L. Huckabee: Si 3 N 4 -SiC Composites. Am. Ceram. Soc. Bull. 66 [2], 347–352 (1987)Google Scholar
  103. [4.103]
    L. Sigl, P. Mataga, B.J. Dalgleish, R.M. McMeeking, and A.G. Evans: On the Toughness of Brittle Materials Reinforced with a Ductile Phase. Acta Metall. 36 [4], 945–953 (1988)CrossRefGoogle Scholar
  104. [4.104]
    F. Erdogan and P.F. Joseph: Toughening of Ceramics Through Crack Bridging by Ductile Particles. J. Am. Ceram. Soc. 72 [2], 262–270 (1989)CrossRefGoogle Scholar
  105. [4.105]
    R.H.J. Hannink and M.V. Swain: Progress in Transformation Toughening of Ceramics. Ann. Rev. Mater. Sci. 24, 359–408 (1994)CrossRefGoogle Scholar
  106. [4.106]
    Y. Ikuma, W. Komatsu, and S. Yaegashi: ZrO 2 -Toughened MgO and Critical Factors in Toughening Ceramic Materials by Incorporating Zirconia. J. Mater. Sci. Lett. 4 [1], 63–66 (1985)CrossRefGoogle Scholar
  107. [4.107]
    M. Ruhle, N. Claussen, and A.H. Heuer: Transformation and Microcrack Toughening as Complementary Processes in ZrO 2 -Toughened Al 2 O 3. J. Am. Ceram. Soc. 69 [3], 195–197 (1986)CrossRefGoogle Scholar
  108. [4.108]
    J. Wang and R. Stevens: Review-Zirconia Toughened Alumina (ZTA) Ceramics. J. Mater. Sci. 24 [10], 3421–3440 (1990)CrossRefGoogle Scholar
  109. [4.109]
    J.S. Moya and M.S. Osendi: Microstructure and Mechanical Properties of Mullite/ZrO 2 Composites. J. Mater. Sci. 19 [9], 2909–2914 (1984)CrossRefGoogle Scholar
  110. [4.110]
    T. Watanabe and K. Shobu: Mechanical Properties of Hot Pressed TiB 2 -ZrO 2 Composites. J. Am. Ceram. Soc. 68 [2], C-34–36 (1985)Google Scholar
  111. [4.111]
    P.F. Becher and T.N. Tiegs: Toughening Behavior Involving Multiple Mechanisms: Whisker Reinforcement and Zirconia Toughening. J. Am. Ceram. Soc. 70 [9], 651–654 (1987)CrossRefGoogle Scholar
  112. [4.112]
    A.C. Solomah, W. Reichert, V. Rondinella, L. Esposito, and E. Toscano: Mechanical Properties, Thermal Shock Resistance, and Thermal Stability of Zirconia-Toughened Alumina-10 vol% Silicon Carbide Whisker-Ceramic Matrix Composite. J. Am. Ceram. Soc. 73 [3], 740–743 (1990)CrossRefGoogle Scholar
  113. [4.113]
    F.F. Lange: Transformation Toughening Part 5: Effect of Temperature and Alloy on Fracture Toughness. J. Mater. Sci. 17 [1], 255–262 (1982)CrossRefGoogle Scholar
  114. [4.114]
    B. Budianski, J.W. Hutchinson, and J.C. Lambropoulos: Continuum Theory of Dilatant Transformation Toughening in Ceramics. Int. J. Sol. Struct. 19 [4], 337–355 (1983)CrossRefGoogle Scholar
  115. [4.115]
    W. Pompe, H.A. Bahr, G. Gille, and W. Kreher: Increased Fracture Toughness of Brittle Materials by Microcracking in an Energy Dissipative Zone at the Crack Tip. J. Mater. Sci. Lett. 13 [12], 2720–2723(1978)CrossRefGoogle Scholar
  116. [4.116]
    K.T. Faber: Microcracking Contributions to the Toughness of ZrO 2 -Based Ceramics. In: Advances in Ceramics, Vol.12: Science and Technology of Zirconia II. N. Claussen, M. Ruhle, and A.H. Heuer (eds.). (The American Ceramic Society Columbus OH, 1984), pp. 293–305Google Scholar
  117. [4.117]
    A.G. Evans and K.T. Faber: Crack-Growth Resistance of Microcracking Brittle Materials. J. Am. Ceram. Soc. 67 [4], 255–260 (1984)CrossRefGoogle Scholar
  118. [4.118]
    M. Ruhle, A.G. Evans, R.M. McMeeking, P.G. Charalambides, and J.W. Hutchinson: Microcrack Toughening in Alumina/Zirconia. Acta Metall. 35 [11], 2701–2710 (1987)CrossRefGoogle Scholar
  119. [4.119]
    A.G. Evans: Microfracture from Thermal Expansion Anisotropy: I. Single Phase Systems. Acta Metall. 26 [12], 1845–1853 (1978)CrossRefGoogle Scholar
  120. [4.120]
    B.L. Karihaloo: Contribution of t→m Phase Transformation to the Toughening of ZTA. In: Proceedings of the 11th Riso International Symposium on Metallurgy and Materials Science. J.J. Bentzen, J.B.B. Sorensen, N. Christiansen, A. Horsewell, and B. Ralph (eds.). (Riso National Laboratory Roskilde Denmark, 1990), pp. 359–364Google Scholar
  121. [4.121]
    A.V. Virkar and R.L.K. Matsumoto: Ferroelastic Domain Switching as a Toughening Mechanism in Tetragonal Zirconia. J. Am. Ceram. Soc. 69 [10], C-224–226(1986)CrossRefGoogle Scholar
  122. [4.122]
    B.S. Li, Y.S. Cheng, K.J. Bowman, and I.W. Chen: Domain Switching as a Toughening Mechanism in Tetragonal Zirconia. J. Am. Ceram. Soc. 71 [7], C-362–364(1988)CrossRefGoogle Scholar
  123. [4.123]
    G.V. Srinivasan, J.F. Jue, S.Y. Kuo, and A.V. Virkar: Ferroelastic Domain Switching in Polydomain Tetragonal Zirconia Single Crystals. J. Am. Ceram. Soc. 72 [11], 2098–2103 (1989)CrossRefGoogle Scholar
  124. [4.124]
    A.V. Virkar and R.L.K. Matsumoto: Toughening Mechanism in Tetragonal Zirconia Polycrystal (TZP) Ceramics. In: Advances in Ceramics Vol.24 B: Science and Technology of Zirconia III. S. Somiya, N. Yamamoto, and H. Yanagida (eds.). (The American Ceramic Society Westerville OH, 1988), pp. 653–662Google Scholar
  125. [4.125]
    F.F. Lange: The Interaction of a Crack Front With a Second Phase Dispersion. Phil. Mag. 22 [179], 983–992 (1970)CrossRefGoogle Scholar
  126. [4.126]
    D.J. Green: Fracture Toughness Predictions for Crack Bowing in Brittle Particulate Composites. J. Am. Ceram. Soc. 66 [1], C-4–5 (1983)Google Scholar
  127. [4.127]
    K.T. Faber and A.G. Evans: Crack Deflection Processes-I.Theory. Acta Metall. 31 [4], 565–576 (1983)CrossRefGoogle Scholar
  128. [4.128]
    H. Liu, K.L. Weisskopf, and G. Petzow: Crack Deflection Process for Hot Pressed Whisker Reinforced Ceramic Composites. J. Am. Ceram. Soc. 72 [4], 559–563 (1989)CrossRefGoogle Scholar
  129. [4.129]
    D.H. Carter and G.F. Hurley: Crack Deflection as a Toughening Mechanism in SiC-Whisker-Reinforced MoSi 2. J. Am. Ceram. Soc. 70 [4], C-79–81(1987)CrossRefGoogle Scholar
  130. [4.130]
    K.T. Faber and A.G. Evans: Intergranular Crack Deflection Toughening in Silicon Carbide. J. Am. Ceram. Soc. 66 [6], C-94–96 (1983)CrossRefGoogle Scholar
  131. [4.131]
    P.F. Becher, C.H. Hsueh, P. Angelini, and T.N. Tiegs: Toughening Behavior in Whisker Reinforced Ceramic Matrix Composites. J. Am. Ceram. Soc. 71 [12], 1050–1061 (1988)CrossRefGoogle Scholar
  132. [4.132]
    M. Bengisu: Densification and Mechanical Properties of Whisker and/or Zirconia Toughened Alumina, Effect of Shock Treatment and Consolidation Method. Ph.D. Thesis. (New Mexico Institute of Mining and Technology Socorro NM, 1992)Google Scholar
  133. [4.133]
    J.K. Wells and P.W.R. Beaumont: The Toughness of a Composite Containing Short Brittle Fibers. J. Mater. Sci. 23 [4], 1274–1278 (1988)CrossRefGoogle Scholar
  134. [4.134]
    M.C. Shaw and K.T. Faber: Temperature Dependent Toughening in Whisker Reinforced Ceramics. In: Materials Science Research, Vol.21: Ceramic Microstructures’86, Role of Interfaces. J.A. Pask and A.G. Evans (eds.). (Plenum Press New York, 1987), pp. 775–794Google Scholar
  135. [4.135]
    S. Iio, M. Watanabe, M. Matsubara, and Y. Matsuo: Mechanical Properties of Alumina/Silicon Carbide Whisker Composites. J. Am. Ceram. Soc. 72 [10], 1880–1884 (1989)CrossRefGoogle Scholar
  136. [4.136]
    R. Hayami, K. Ueno, I. Kondou, N. Tamari, and O. Kamigato: Si 3 N 4 -SiC Whisker Composite Material. In: Materials Science Research, Vol.20: Tailoring Multiphase and Composite Ceramics. R.E. Tressler, G.L. Messing, C.G. Pantano, and R.E. Newnham (eds.). (Plenum Press New York, 1988), pp. 663–674Google Scholar
  137. [4.137]
    T. Kandori, Y. Ukyo, and S. Wada: Directly HIP’ed SiC Whisker Reinforced Silicon Nitrides. In: Whisker and Fiber Toughened Ceramics. R.A. Bradley, D.E. Clark, D.C. Larsen, and J.O. Stiegler (eds.). (The American Society for Metals International Metals Park OH, 1989), pp. 125–129Google Scholar
  138. [4.138]
    T.N. Tiegs: Properties of SiC Whisker Reinforced Oxide Matrix Composites. In: Whisker and Fiber Toughened Ceramics. R.A. Bradley, D.E. Clark, D.C. Larsen, and J.O. Stiegler (eds.). (The American Society for Metals Metals Park OH, 1989), pp. 105–108Google Scholar
  139. [4.139]
    S.K. Douglas, P.W.R. Beaumont, and M.F. Ashby: A Model for the Toughness of Epoxy-Rubber Particulate Composites. J. Mater. Sci. 15 [5], 1109–1123(1980)CrossRefGoogle Scholar
  140. [4.140]
    R.C. Leuth: Determination of Fracture Toughness Parameters for Tungsten Carbide-Cobalt Alloys. In: Fracture Mechanics of Ceramics, Vol.2. R.C. Bradt, D.P.H. Hasselman, and F.F. Lange (eds.). (Plenum Press New York, 1974), pp. 791–806CrossRefGoogle Scholar
  141. [4.141]
    V.D. Krstic, P.S. Nicholson, and R.G. Hoagland: Toughening of Glasses by Metallic Particles. J. Am. Ceram. Soc. 64 [9], 499–504 (1981)CrossRefGoogle Scholar
  142. [4.142]
    P.L. Swanson, C.J. Fairbanks, B.R. Lawn, Y.W. Mai, and B.J. Hockey: Crack Interface Grain Bridging as a Fracture Resistant Mechanism in Ceramics: I, Experimental Study on Alumina. J. Am. Ceram. Soc. 70 [4], 279–289(1987)CrossRefGoogle Scholar
  143. [4.143]
    Y.W. Mai and B.R. Lawn: Crack Interface Grain Bridging as a Fracture Resistance Mechanism in Ceramics: II, Theoretical Fracture Mechanics Model. J. Am. Ceram. Soc. 70 [4], 289–294 (1987)CrossRefGoogle Scholar
  144. [4.144]
    G. Vekinis, M.F. Ashby, and P.W.R. Beaumont: R-Curve Behavior in Al 2 O 3 Ceramics. Acta Metall. Mater. 38 [6], 1151–1162 (1990)CrossRefGoogle Scholar
  145. [4.145]
    H. Wieninger, K. Kromp, and R.F. Pabst: Crack Resistance Curves of Alumina and Zirconia at Room Temperature. J. Mater. Sci. 21 [2], 411–418(1986)CrossRefGoogle Scholar
  146. [4.146]
    J.C. Hay and K.W. White: Grain Bridging Mechanisms in Monolithic Alumina and Spinel. J. Am. Ceram. Soc. 76 [7], 1849–1854 (1995)CrossRefGoogle Scholar
  147. [4.147]
    B.R. Lawn, L.M. Braun, S.J. Bennison, and R.E. Cook: Reply to “Comment on Role of Grain Size in the Strength and R-Curve Properties of Alumina”. J. Am. Ceram. Soc. 76 [7], 1900–1901 (1993)CrossRefGoogle Scholar
  148. [4.148]
    A.G. Evans and R.M. McMeeking: On the Toughening of Ceramics by Strong Reinforcements. Acta Metall. 34 [12], 2435–2441 (1986)CrossRefGoogle Scholar
  149. [4.149]
    R. Morrell: Handbook of Properties of Technical and Engineering Ceramics, Part 1. (Her Majesty’s Stationery Office London, 1985)Google Scholar
  150. [4.150]
    K.T. Faber and A.G. Evans: Crack Deflection Processes-II.Experiment. Acta Metall. 31 [4], 577–584 (1983)CrossRefGoogle Scholar
  151. [4.151]
    G.J. Zhang, X.M. Yue, Z.Z. Jin, and J.Y. Dai: In-Situ Synthesized TiB 2 Toughened SiC J. Eur. Ceram. Soc. 16 [4], 409–412 (1996)CrossRefGoogle Scholar
  152. [4.152]
    Y.G. Gogotsi: Review: Particulate Silicon Nitride Based Composites. J. Mater. Sci. 29 [10], 2541–2556 (1994)CrossRefGoogle Scholar
  153. [4.153]
    M. Bengisu, O.T. Inal, and O. Tosyali: On Whisker Toughening in Ceramic Materials. Acta Metall. Mater. 39 [11], 2509–2517 (1991)CrossRefGoogle Scholar
  154. [4.154]
    D.P.H. Hasselman: Thermal Stress Resistance of Engineering Ceramics. Mater. Sci. Eng. 71, 251–264 (1985)CrossRefGoogle Scholar
  155. [4.155]
    R.C. Hendricks, G. McDonald, and R.L. Mullen: Residual Stress in Plasma-Sprayed Ceramic Turbine Tip and Gas-Path Seal Specimen. Ceram. Eng. Sci. Proc. 4 [9–10], 802–809 (1983)CrossRefGoogle Scholar
  156. [4.156]
    M.M. Schwartz: Ceramic Joining (ASM International Materials Park OH, 1990)Google Scholar
  157. [4.157]
    R. Danzer: Properties of Ceramics During High Temperature Applications. Ceram. Forum Int. 70 [6], 280–286 (1993)Google Scholar
  158. [4.158]
    F. Sudreau, C. Olagnon, and G. Fantozzi: Lifetime Prediction of Ceramics: Importance of the Test Method. Ceram. Int. 20 [2], 125–135 (1994)CrossRefGoogle Scholar
  159. [4.159]
    W.D. Kingery, H.K. Bowen, and D.R. Uhlmann: Introduction to Ceramics. (John Wiley & Sons New York, 1976)Google Scholar
  160. [4.160]
    F. Mignard, C. Olagnon, and G. Fantozzi: Acoustic Emission Monitoring of Damage Evaluation in Ceramics Submitted to Thermal Shock. J. Eur. Ceram. Soc. 15 [7], 651–653 (1995)CrossRefGoogle Scholar
  161. [4.161]
    O. Sbaizero: Prove di Resistenza Agli Shock Termici. Ceramurgia 24 [4], 143–150(1994)Google Scholar
  162. [4.162]
    W.P. Rogers and A.F. Emery: Contact Thermal Shock Test of Ceramics. J. Mater. Sci. 27 [1], 146–152 (1992)CrossRefGoogle Scholar
  163. [4.163]
    A.G. Evans: Fatigue in Ceramics. Int. J. Fract. 16 [6], 485–498 (1980)CrossRefGoogle Scholar
  164. [4.164]
    S. Horibe: A New Method for Tension-Compression Fatigue Testing of Ceramic Materials. J. Mater. Sci. Lett. 9 [7], 745–747 (1990)CrossRefGoogle Scholar
  165. [4.165]
    F. Guiu, M.J. Reece, and D.A.J. Vaughan: Cyclic Fatigue of Ceramics. J. Mater. Sci. 26 [12], 3275–3286 (1991)CrossRefGoogle Scholar
  166. [4.166]
    C.J. Gilbert, R.H. Dauskart, and R.O. Ritchie: Behavior of Cyclic Fatigue Cracks in Monolithic Silicon Nitride. J. Am. Ceram. Soc. 78 [9], 2291–2300(1995)CrossRefGoogle Scholar
  167. [4.167]
    D. Lewis and R.W. Rice: Comparison of Static, Cyclic, and Thermal-Shock Fatigue in Ceramic Composites. Ceram. Eng. Sci. Proc. 3 [9–10], 714–721 (1982)CrossRefGoogle Scholar
  168. [4.168]
    L. Ewart and S. Suresh: Crack Propagation in Ceramics Under Cyclic Loads. J. Mater. Sci. 22 [4], 1173–1192 (1987)CrossRefGoogle Scholar
  169. [4.169]
    S. Suresh and J.R. Brockenbrough: Theory and Experiments of Fracture in Cyclic Compression: Single Phase, Transforming Ceramics, and Ceramic Composites. Acta Metall. 36 [6], 1455–1470 (1988)CrossRefGoogle Scholar
  170. [4.170]
    D.L. Lewis III: Cyclic Mechanical Fatigue in Ceramic-Ceramic Composites, An Update. Ceram. Eng. Sci. Proc. 4 [9–10], 874–881 (1983)CrossRefGoogle Scholar
  171. [4.171]
    J.W. Holmes, T. Kotil, and W.T. Foulds: High Temperature Fatigue of SiC Fiber Reinforced Si 3 N 4 Ceramic Composites. In: Symposium on High Temperature Composites, Proc. Am. Soc. for Composites. (Technomic Lancaster PA, 1989)Google Scholar
  172. [4.172]
    D.C. Phillips: Long-Fiber Reinforced Ceramics. In: Ceramic Matrix Composites. R. Warren (ed.). (Blackie and Son London, 1992), pp. 167–196Google Scholar
  173. [4.173]
    G. Choi and S. Horibe: The Environmental Effect on Cyclic Fatigue Behavior in Ceramic Materials. J. Mater. Sci. 30 [6], 1565–1569 (1995)CrossRefGoogle Scholar
  174. [4.174]
    R. Raj: Fundamental Research in Structural Ceramics for Service near 2000°C J. Am. Ceram. Soc. 76 [9], 2147–2173 (1993)CrossRefGoogle Scholar
  175. [4.175]
    S. Suresh, L.X. Han, and J.J. Petrovic: Fracture of Si 3 N 4 -SiC Whisker Composites Under Cyclic Loads. J. Am. Ceram. Soc. 71 [3], C-158–161 (1988)CrossRefGoogle Scholar
  176. [4.176]
    D.S. Jacobs and I.W. Chen: Cyclic Fatigue in Ceramics: A Balance Between Crack Shielding Accumulation and Degredation. J. Am. Ceram. Soc. 78[51], 513–520(1995)CrossRefGoogle Scholar
  177. [4.177]
    T. Soma, M. Matsuda, M. Matsui, and I. Oda: Cyclic Fatigue Testing of Ceramic Materials. Int. J. High Tech. Ceram. 4 [2–4], 289–299 (1988)CrossRefGoogle Scholar
  178. [4.178]
    H.N. Ko: Fatigue Strength of Sintered Si 3 N 4 Under Rotary Bending. J. Mater. Sci. Lett. 6 [2], 175–177 (1987)CrossRefGoogle Scholar
  179. [4.179]
    M. Reece and F. Guiu: Repeated Indentation Method for Studying Cyclic Fatigue in Ceramics. J. Am. Ceram. Soc. 73 [4], 1004–1013 (1990)CrossRefGoogle Scholar
  180. [4.180]
    W.R. Cannon and T.G. Langdon: Review, Creep of Ceramics, Part 1 Mechanical Characteristics. J. Mater. Sci. 18 [1], 1–50 (1983)CrossRefGoogle Scholar
  181. [4.181]
    Y. Maehara and T.G. Langdon: Review-Superplasticity in Ceramics. J. Mater. Sci. 25 [5], 2275–2286 (1990)CrossRefGoogle Scholar
  182. [4.182]
    F. Wakai: Superplasticity of Ceramics. Ceram. Int. 17 [3], 153–63 (1991)CrossRefGoogle Scholar
  183. [4.183]
    W.F. Smith: Principles of Materials Engineering. (McGraw-Hill New York, 1986)Google Scholar
  184. [4.184]
    S. Deng and R. Warren: Creep Properties of Single Crystal Oxides Evaluated by a Larson-Miller Procedure. J. Eur. Ceram. Soc. 15 [6], 513–520(1995)CrossRefGoogle Scholar
  185. [4.185]
    M.F. Ashby: A First Report on Deformation-Mechanism Maps. Acta Metall. 20 [7], 887–897 (1972)CrossRefGoogle Scholar
  186. [4.186]
    H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps. (Pergamon Press Oxford England, 1982)Google Scholar
  187. [4.187]
    R.A. Verrall, R.J. Fields, and M.F. Ashby: Deformation Mechanism Maps for LiF and NaCl. J. Am. Ceram. Soc. 60 [5–6], 211–216 (1977)CrossRefGoogle Scholar
  188. [4.188]
    J.D. French, J. Zhao, M.P. Harmer, H.M. Chan, and G.A. Miller: Creep of Duplex Microstructures. J. Am. Ceram. Soc. 77 [11], 2857–2865 (1994)CrossRefGoogle Scholar
  189. [4.189]
    S. Suresh and J.R. Brockenbrough: A Theory for Creep by Interfacial Flaw Growth in Ceramics and Ceramic Composites. Acta Metall. 38 [1], 55–68(1990)CrossRefGoogle Scholar
  190. [4.190]
    M.R. Notis, R.H. Smoak, and V. Krishnamachari: Interpretation of Hot Pressing Kinetics by Densification Mapping Techniques. In: Materials Science Research, Vol.10: Sintering and Catalysis. G.C. Kuczynski (ed.). (Plenum Press New York, 1975), pp. 493–507Google Scholar
  191. [4.191]
    A.H. Chokshi and J.R. Porter: Creep Deformation of an Alumina Matrix Composite Reinforced with Silicon Carbide Whiskers. J. Am. Ceram. Soc. 68[6], C-144–145(1985)CrossRefGoogle Scholar
  192. [4.192]
    A.G. Evans and B.J. Dalgleish: Some Aspects of the High Temperature Performance of Ceramics and Ceramic Composites. In: Superalloys, Supercomposites, and Superceramics. J.K. Tien and T. Caulfield (eds.). (Academic Press San Diego CA, 1989), pp. 697–720CrossRefGoogle Scholar
  193. [4.193]
    J.M. Birch, B. Wilshire, and D.J. Godfey: Deformation and Fracture Processes During Creep of Reaction Bonded and Hot Pressed Silicon Nitride. Proc. Brit. Ceram. Soc. 25, 141–154 (1978)Google Scholar
  194. [4.194]
    S.M. Wiederhorn, D.E. Roberts, T.J. Chuang, and L. Chuck: Damage Enhanced Creep in a Siliconized Silicon Carbide: Phenomenology. J. Am. Ceram. Soc. 71 [7], 602–608 (1988)CrossRefGoogle Scholar
  195. [4.195]
    W.J. Kim, J. Wolfenstine, G. Frommeyer, O.A. Ruano, and O.D. Sherby: Superplastic Behavior of Iron Carbide. Scr. Metall. 23 [9], 1515–1520 (1989)CrossRefGoogle Scholar
  196. [4.196]
    I.-W. Chen and L.A. Xue: Development of Superplastic Structural Ceramics. J. Am. Ceram. Soc. 73 [9], 2585–2609 (1990)CrossRefGoogle Scholar
  197. [4.197]
    C.A. Johnson, R.C. Bradt, and J.H. Hoke: Transformational Plasticity in Bi 2 O 3. J. Am. Ceram. Soc. 58 [1–2], 37–40 (1975)CrossRefGoogle Scholar
  198. [4.198]
    L.A. Xue and R. Raj: Superplastic Deformation of Zinc Sulfide Near its Transformation Temperature (1020°C). J. Am. Ceram. Soc. 72 [10], 1792–1796(1989)CrossRefGoogle Scholar
  199. [4.199]
    T.G. Langdon: Superplastic Ceramics, They’re Not A Stretch of the Imagination Anymore. JOM 42 [7], 8–13 (1990)CrossRefGoogle Scholar
  200. [4.200]
    S.L. Hwang and I.W. Chen: Superplastic Forming of SiAlON Ceramics. J. Am. Ceram. Soc. 77 [10], 2575–2585 (1994)CrossRefGoogle Scholar
  201. [4.201]
    R.W. Rice: Micromechanics of Microstructural Aspects of Ceramic Wear. Ceram. Eng. Sci. Proc. 6 [7–8], 940–958 (1985)CrossRefGoogle Scholar
  202. [4.202]
    C.A. Brookes and A.K. Parry: Some Fundamental Aspects of the Mechanical Wear of Hard Ceramic Crystals due to Sliding. Mater. Sci. Eng. A105/106, 143–150 (1988)Google Scholar
  203. [4.203]
    E.A. Almond: Overview: Indentation Phenomena and Wear of Surfaces and Edges. Mater. Sci. Tech. 2 [7], 641–646 (1986)CrossRefGoogle Scholar
  204. [4.204]
    J.R. Alcock and O.T. Sorensen: Slurry Abrasion Resistance of Engineering Ceramics. Br. Ceram. Trans. 95 [1], 30–34 (1996)Google Scholar
  205. [4.205]
    H. Kong and M.F. Ashby: Wear Mechanisms in Brittle Solids. Acta Metall. 40 [11], 2907–2920 (1992)CrossRefGoogle Scholar
  206. [4.206]
    D. Holz, R. Janssen, K. Friedrich, and N. Claussen: Abrasive Wear of Ceramic-Matrix Composites. J. Eur. Ceram. Soc. 5 [4], 229–232 (1989)CrossRefGoogle Scholar
  207. [4.207]
    M. Bohmer and E.A. Almond: Mechanical Properties and Wear Resistance of a Whisker-Reinforced Zirconia-Toughened Alumina. Mater. Sci. Eng. A105/106, 105–116 (1988)Google Scholar
  208. [4.208]
    F. Thevenot et P. Homerin: Composites Alumine-Zircone. In: Ceramiques Composites a Particules, Cas du Frittage-Reaction. F. Thevenot (ed.). (Forceram Editions Septima Paris France, 1992), pp. 39–60Google Scholar
  209. [4.209]
    C.Cm. Wu, R.W. Rice, C.P. Cameron, L.E. Dolhert, J.H. Enloe, and J. Block: Diamond Pin-On-Disk Wear of Al 2 O 3 Matrix Composites and Nonoxides. Ceram. Eng. Sci. Proc: 12 [7–8], 1485–1499 (1991)CrossRefGoogle Scholar
  210. [4.210]
    S.W. Lee, S.M. Hsu, and M.C. Shen: Ceramic Wear Maps: Zirconia. J. Am. Ceram. Soc. 76 [8], 1937–1947 (1993)CrossRefGoogle Scholar
  211. [4.211]
    C.M. Wu and R.W. Rice: Porosity Dependence of Wear and Other Mechanical Properties on Fine-Grain Al 2 O 3 and B 4 C Ceram. Eng. Sci. Proc. 6 [7–8], 995–1011 (1985)CrossRefGoogle Scholar
  212. [4.212]
    C.M. Wu, R.W. Rice, D. Johnson, and B.A. Platt: Grain Size Dependence of Wear in Ceramics. Ceram. Eng. Sci. Proc. 6 [7–8], 1012–1021 (1985)Google Scholar
  213. [4.213]
    M.G. Gee and E.A. Almond: Effects of Test Variables in Wear Testing of Ceramics. Mater. Sci. Tech. 4 [10], 877–884 (1988)CrossRefGoogle Scholar
  214. [4.214]
    S.M. Wiederhorn: Erosion of Ceramics. In: Proceedings of Corrosion/Erosion of Coal Conversion Systems Materials Conference. A.V. Levy (ed.). (National Association of Corrosion Engineering Houston TX, 1979), pp. 444–419Google Scholar
  215. [4.215]
    J.F. Vedder: Microcraters in Glass and Minerals. Earth Planet. Sci. Lett. 11 [3], 291–296 (1971)CrossRefGoogle Scholar
  216. [4.216]
    P.S. Follansbee, G.B. Sinclair, and J.C. Williams: Modeling of Low Velocity Particulate Erosion in Ductile Materials by Spherical Particles. Wear 74 [1], 107–122 (1981–82)CrossRefGoogle Scholar
  217. [4.217]
    K.G. Budinski: Engineering Materials. Reston Publishing Reston Virginia, 1983)Google Scholar
  218. [4.218]
    G.L. Sheldon and I. Finnie: On Ductile Behavior of Nominally Brittle Materials During Erosive Cutting. Trans ASME J. Eng. Ind. 88 [4], 387–392(1966)CrossRefGoogle Scholar
  219. [4.219]
    L. Murugesh, S. Srinivasan, and R.O. Scattergood: Models and Material Properties for Erosion of Ceramics. J. Mater. Eng. 13 [1], 55–61 (1991)CrossRefGoogle Scholar
  220. [4.220]
    A.G. Evans, M.E. Gulden, and M.E. Rosenblatt: Impact Damage in Brittle Materials in the Elastic-Plastic Response Regime. Proc. Roy. Soc. (London) A 361 [1706], 343–365 (1978)Google Scholar
  221. [4.221]
    J.E. Ritter: Erosion Damage in Structural Ceramics. Mater. Sci. Eng. 71, 195–201 (1985)CrossRefGoogle Scholar
  222. [4.222]
    S. Srinivasan and R.O. Scattergood: Erosion of Mg-PSZ by Solid Particle Impact. Adv. Ceram. Mater. 3 [4], 345–352 (1988)Google Scholar
  223. [4.223]
    J.L. Routbort: Erosion of Composite Ceramics. Ceram. Acta 6 [1], 5–13 (1994)Google Scholar
  224. [4.224]
    S. Wada: Effects of Hardness and Fracture Toughness of Target Materials and Impact Particles on Erosion of Ceramic Materials. Key Eng. Mater. 71, 51–74(1992)CrossRefGoogle Scholar
  225. [4.225]
    J.L. Routbort and R.O. Scattergood: Solid Particle Erosion of Ceramics and Ceramic Composites. Key Eng. Mater. 71, 23–50 (1992)CrossRefGoogle Scholar
  226. [4.226]
    S. Bugliosi, D. Cuppini, and G.E. D’Errico: Come Si Erodono I Ceramici Riv. Mecc. Oggi 11 [4], 43–47 (1996)Google Scholar
  227. [4.227]
    W.J. Tomlinson and S.J. Matthews: Cavitation Erosion of Structural Ceramics. Ceram. Intern. 20 [3], 201–209 (1994)CrossRefGoogle Scholar
  228. [4.228]
    D.D. Pollock: Physical Properties of Materials for Engineers, Vol.1 (CRC Press Boca Raton FL, 1984)Google Scholar
  229. [4.229]
    D.R. Gaskell: Introduction to Metallurgical Thermodynamics. (McGraw-Hill New York, 1981)Google Scholar
  230. [4.230]
    W.F. Hammetter: Thermophysical Properties. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 610–616Google Scholar
  231. [4.231]
    W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott: Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. J. App. Phys. 32 [9], 1679–1684 (1961)CrossRefGoogle Scholar
  232. [4.232]
    R. Taylor: Construction of Apparatus for Heat Pulse Thermal Diffusivity Measurements from 300–3000 K. J. Phys. E: Sci. Instr. 13 [11], 1193–1199(1980)CrossRefGoogle Scholar
  233. [4.233]
    J.C. Anderson, K.D. Leaver, R.D. Rawlings, and J.M. Alexander: Materials Science. (Chapman Hall London, 1990)Google Scholar
  234. [4.234]
    G. Aliprandi and F. Savioli: Introduzione ai Ceramici Avanzati, Vol.1. (ENEA Rome, 1989)Google Scholar
  235. [4.235]
    L.H. Van Vlack: Physical Ceramics for Engineers. (Addison-Wesley Reading MA, 1964)Google Scholar
  236. [4.236]
    J. Franci, W.D. Kingery: Thermal Conductivity: IX, Experimental Investigation of Effect of Porosity on Thermal Conductivity. J. Am. Ceram. Soc. 37 [2], 99–107 (1954)CrossRefGoogle Scholar
  237. [4.237]
    G.S. Sheffield and J.R. Schorr: Comparison of Thermal Diffusivity and Thermal Conductivity Methods. Am. Ceram. Soc. Bull. 70 [1], 102–106 (1991)Google Scholar
  238. [4.238]
    D. Fournier, L. Portier, A.C. Boccara, G. Savignat, P. Boch, J. Poirier, G. Provost: Caratterizzazione Non-Distruttiva di Refrattari Tramite Tecniche Fototermiche. Ceramurgia 26 [2], 94–97 (1996)Google Scholar
  239. [4.239]
    A.W. Sleight: Isotropic Negative Thermal Expansion. Ann. Rev. Mater. Sci. 28, 29–43(1998)CrossRefGoogle Scholar
  240. [4.240]
    R.J. Beals and R.L. Cook: Directional Dilatation of Crystal Lattices at Elevated Temperatures. J. Am. Ceram. Soc. 40 [8], 279–284 (1957)CrossRefGoogle Scholar
  241. [4.241]
    J. Hlavac: The Technology of Glass and Ceramics. (Elsevier New York, 1983)Google Scholar
  242. [4.242]
    W.L. Wolfe: Properties of Optical Materials. In: Handbook of Optics. W.G. Driscoll and W. Vaughan (eds.). (Mc-Graw-Hill New York, 1978)Google Scholar
  243. [4.243]
    T.D. Taylor: Structure and Properties of Glasses. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 564–569Google Scholar
  244. [4.244]
    M.W. Barsoum: Fundamentals of Ceramics. (Mc-Graw-Hill New York, 1997)Google Scholar
  245. [4.245]
    Handbook of Optical Constants of Solids. E.D. Palik (ed.). (Academic Press Orlando FL, 1985)Google Scholar
  246. [4.246]
    CRC Handbook of Chemistry and Physics. R.C. Weast (ed.). (CRC Press Boca Raton FL, 1986)Google Scholar
  247. [4.247]
    M. Francon: Isotropic and Anisotropic Media, Application of Anisotropic Materials to Interferometry. In: Advanced Optical Techniques. A.C.S. Van Heel (ed.). (North Holland Amsterdam, 1967), pp. 23–70Google Scholar
  248. [4.248]
    G.R. Streatfield: Ceramic Color. Br. Ceram. Trans. J. 89 [5], 177–180 (1990)Google Scholar
  249. [4.249]
    Mastering Color, The Kodak Library of Creative Photography. (Kodak Mitchell Beazley Publishers-Salvat Editores Barcelona, 1985)Google Scholar
  250. [4.250]
    C. Kittel: Introduction to Solid State Physics (John Wiley &; Sons New York, 1986)Google Scholar
  251. [4.251]
    Solid State Physics Source Book. S.P. Parker (ed.). (McGraw-Hill New York, 1988)Google Scholar
  252. [4.252]
    C.C. Wang, S.A. Akbar, W. Chen, and V.D. Patton: Review: Electrical Properties of High-Temperature Oxides, Borides, Carbides, and Nitrides. J. Mater. Sci. 30 [7], 1627–1641 (1995)CrossRefGoogle Scholar
  253. [4.253]
    R.W. Schwartz: Electronic and Magnetic Ceramics. In: Characterization of Ceramics. R.E. Loehman (ed.). (Butterworth-Heinemann Stoneham MA, 1993)Google Scholar
  254. [4.254]
    D.D. Pollock: Electrical Conduction in Solids. (American Society for Metals Metals Park OH, 1985)Google Scholar
  255. [4.255]
    Ceramic Materials for Electronics. R.C. Buchanan (ed.). (Marcel Dekker New York, 1986)Google Scholar
  256. [4.256]
    A.J. Moulson and J.M. Herbert: Electroceramics. (Chapman & Hall London, 1990)Google Scholar
  257. [4.257]
    M. Ura: Ceramic Substrates. In: Fine Ceramics. S. Saito (ed.). (Elsevier Essex England, 1985), pp. 243–251Google Scholar
  258. [4.258]
    H.L. Tuller and P.K. Moon: Fast Ion Conductors: Future Trends. Mater. Sci. Eng. B1 [2], 171–191(1988)CrossRefGoogle Scholar
  259. [4.259]
    P. McGeehin and A. Hooper: Review: Fast Ion Conduction Materials. J. Mater. Sci. 12 [1], 1–27(1977)CrossRefGoogle Scholar
  260. [4.260]
    M. Nagai: Ionic Conductors. In: Fine Ceramics. S. Saito (ed.). (Elsevier Essex England, 1985), pp. 297–306Google Scholar
  261. [4.261]
    K. Onnes: Report on the Researches Made in the Leiden Cryogenic Laboratory Between the Second and Third International Congress of Refrigeration. Supp. 34 b (1913)Google Scholar
  262. [4.262]
    J.G. Bednorz and K.A. Müller: Possible High T c Superconductivity in the Ba-La-Cu-O System. Z. Phys. B. 64, 189–193 (1986)CrossRefGoogle Scholar
  263. [4.263]
    J.H. Sharp: A Review of the Crystal Chemistry of Mixed Oxide Superconductors. Br. Ceram. Trans. J. 89 [1], 1–7 (1990)Google Scholar
  264. [4.264]
    M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, and C.W. Chu: Superconductivity at 93K in a New Mixed Phase Y-Ba-Cu-O Compound System at Ambient Pressure. Phys. Rev. Lett. 58 [9], 908–910 (1987)CrossRefGoogle Scholar
  265. [4.265]
    T.P. Sheahen: Introduction to High-Temperature Superconductivity. Plenum Press New York, 1994)Google Scholar
  266. [4.266]
    J.D. Doss: Engineer’s Guide to High-Temperature Superconductivity. (John Wiley & Sons New York, 1989)Google Scholar
  267. [4.267]
    D.M. Kroeger and A. Goyal: Overview: Critical Current and Microstructure in Oxide Superconductors. JOM 44 [10], 42–47 (1992)CrossRefGoogle Scholar
  268. [4.268]
    J. Bardeen, L.N. Cooper, and J.R. Schrieffer. Phys. Rev. 106, 162 (1957CrossRefGoogle Scholar
  269. [4.268a]
    J. Bardeen, L.N. Cooper, and J.R. Schrieffer: Theory of Superconductivity. Phys. Rev. 108, 1175–1204 (1957)CrossRefGoogle Scholar
  270. [4.269]
    P.B. Allen: Status of Theory for Superconductivity in the High-Tc Cuprates. In: High Temperature Superconductors II. D.W. Capone II, W.H. Butler, B. Batlogg, and C.W. Chu (eds.). (Materials Research Society Pittsburgh PA, 1988), pp. 3–5Google Scholar
  271. [4.270]
    D.O. Welch: Theoretical Questions Raised by High T c. JOM 40 [1], 8–9 (1988)CrossRefGoogle Scholar
  272. [4.271]
    A.M. Wolsky, R.F. Giese, and E.J. Daniels: The New Superconductors: Prospects for Applications. Sci. American Feb., 61–69 (1989)Google Scholar
  273. [4.272]
    D. Larbalestier, G. Fisk, B. Montgomery, and D. Hawkswoth. High-Field Superconductivity. Physics Today March, 24–33 (1986)Google Scholar
  274. [4.273]
    J. Narayan: Microstructure and Properties of High T c Superconductors. JOM 41 [1], 18–23(1989)CrossRefGoogle Scholar
  275. [4.274]
    R. Ramesh, A. Inam, T. Sands, and C.T. Rogers: Thin Film Y-Ba-Cu-O High T c Superconductors: Structure-Property Relationships. Mater. Sci. Eng. B14 [2], 188–213(1992)CrossRefGoogle Scholar
  276. [4.275]
    V.Z. Kresin and S.A. Wolf: Fundamentals of Superconductivity. (Plenum Press New York, 1990)Google Scholar
  277. [4.276]
    H.K. Liu, S.X. Dou, A.J. Bourdillon, and C.C. Sorrell: A Comparison of the Stability of Bi 2 Sr 2 CaCu 2 O 8+y with YBa 2 Cu 3 O 6.5+y in Various Solutions. Supercond. Sci. Technol. 1, 194–197 (1988)CrossRefGoogle Scholar
  278. [4.277]
    Z.Z. Sheng and A.M. Hermann: Superconductivity in the Rare-Earth Free Tl-Ba-Cu-O System Above Liquid Nitrogen Temperature. Nature (London) 332 [6159], 138–141 (1988)CrossRefGoogle Scholar
  279. [4.278]
    U. Chowdry and A.W. Sleight: Ceramic Substrates for Microelectronic Packaging. Ann. Rev. Mater. Sci. 17, 323–340 (1987)CrossRefGoogle Scholar
  280. [4.279]
    L. Solymar and D. Walsh: Lectures on the Electrical Properties of Materials. (Oxford University Press Oxford England, 1984)Google Scholar
  281. [4.280]
    W. Heywang and H. Thormann: Tailoring of Piezoelectric Ceramics. Ann. Rev. Mater. Sci. 14, 27–47 (1987)CrossRefGoogle Scholar
  282. [4.281]
    S. Nanamatsu, M. Kimura, K. Doe, S. Matsushita, and N. Yamada: A New Ferroelectric: La 2 Ti 2 O 7. Ferroelectrics 8, 511–513 (1974)CrossRefGoogle Scholar
  283. [4.282]
    M. Serridge and T.R. Licht: Piezoelectric Accelerometer and Vibration Preamplifier Handbook. (Brüel &; Kjaer Naerum Denmark, 1987)Google Scholar
  284. [4.283]
    T. Mitsui, I. Tatsuzaki, and E. Nakamura: An Introduction to the Physics of Ferroelectrics. (Gordon and Breach New York, 1976)Google Scholar
  285. [4.284]
    M.E. Lines and A.M. Glass: Principles and Applications of Ferroelectrics and Related Materials. (Oxford University Press Oxford England, 1979)Google Scholar
  286. [4.285]
    B.M. Park and S J. Chung: Optical, Electron Microscopic, and X-Ray Topographic Studies of Ferroic Domains in Barium Titanate Crystals Grown from High Temperature Solution. J. Am. Ceram. Soc. 77 [12], 3193–3201(1994)CrossRefGoogle Scholar
  287. [4.286]
    Y. Furuhata and G. Toda: Ferroelectric and Electrooptic Materials. In: Fine Ceramics. S. Saito (ed.). (Elsevier Essex England, 1985), pp. 261–275Google Scholar
  288. [4.287]
    J.C. Burfoot and G.W. Taylor: Polar Dielectrics. (University of California Berkeley CA, 1979)Google Scholar
  289. [4.288]
    G.H. Haertling: Electro-Optic Ceramics and Devices. In: Electronic Ceramics. L.M. Levinson (ed.). (Marcel Dekker New York, 1988), pp. 371–492Google Scholar
  290. [4.289]
    F.E. Luborsky, J.D. Livingston, and G.Y. Chin: Magnetic Properties of Metals and Alloys. In: Physical Metallurgy Part II. R.W. Cahn and P. Haasen (eds.). (North Holland Amsterdam Holland, 1983)Google Scholar
  291. [4.290]
    Physical Metallurgy. R.W. Cahn and P. Haasen (eds.). (North Holland Amsterdam Holland, 1983)Google Scholar
  292. [4.291]
    R.W. Hanks: Materials Engineering Science, An Introduction. Harcourt Brace & World New York, 1970)Google Scholar
  293. [4.292]
    L.M. Sheppard: Corrosion-Resistant Ceramics for Severe Environments. Am. Ceram. Soc. Bull. 70 [7], 1146–1166 (1991)Google Scholar
  294. [4.293]
    Y. Hara: Application of Fine Ceramics in Industrial Fields. Corros. Eng. 38 [7], 527–537 (1989)Google Scholar
  295. [4.294]
    W.B. White: Theory of Corrosion of Glass and Ceramics. In: Corrosion of Glass, Ceramics and Ceramic Superconductors. D.E. Clark and B.K. Zoitos (eds.). (Noyes Park Ridge NJ, 1992), pp. 2–50Google Scholar
  296. [4.295]
    R. Divakar, S.G. Seshadri, and M. Srinivasan: Electromechanical Techniques for Corrosion Rate Determination in Ceramics. J. Am. Ceram. Soc. 72 [5], 780–784 (1989)CrossRefGoogle Scholar
  297. [4.296]
    J.P. Day: A Study of the Chemical Reactivity in Ceramic Heat Exchangers. Trans. ASME A 101 [2], 270–274 (1979)CrossRefGoogle Scholar
  298. [4.297]
    R.H. Jones, C.H. Henager, Jr., P.P. Trzaskoma, N.S. Stoloff, T.P. Moffat, and B.D. Lichter: Environmental Effects on Advanced Materials. JOM 40 [12], 18–30(1988)CrossRefGoogle Scholar
  299. [4.298]
    T.A. Michalske, B.C. Bunker, and S.W. Freiman: Stress Corrosion of Ionic and Mixed Ionic/Covalent Solids. J. Am. Ceram. Soc. 69 [10], 721–724(1986)CrossRefGoogle Scholar
  300. [4.299]
    A.G. Metcalfe and G.K. Shmitz: Mechanisms of Stress Corrosion in E Glass Filaments. Glass Tech. 13 [1], 5–16 (1972)Google Scholar
  301. [4.300]
    H.C. Cao, B.J. Dalgleish, C.H. Hsueh, and A.G. Evans: High-Temperature Stress Corrosion Cracking in Ceramics. J. Am. Ceram. Soc. 70 [4], 257–264 (1987).CrossRefGoogle Scholar
  302. [4.301]
    G. Choi and S. Horibe: The Environmental Effect on Cyclic Fatigue Behavior in Ceramic Materials. J. Mater. Sci. 30 [6], 1565–1569 (1995)CrossRefGoogle Scholar
  303. [4.302]
    A.H. Heuer and V.L.K. Lou: Volatility Diagrams for Silica, Silicon Nitride, and Silicon Carbide and their Application to High-Temperature Decomposition and Oxidation. J. Am. Ceram. Soc. 73 [10], 2789–2803 (1990)CrossRefGoogle Scholar
  304. [4.303]
    F. Bregani: Corrosione ad Alta Temperatura di Materiali e Rivestimenti Ceramici. Ceramurgia 24 [4], 151–162 (1994)Google Scholar
  305. [4.304]
    W. Genthe and H. Hausner: Corrosion of Aluminum Oxide in Acids and Caustic Solutions. Ceram. Forum Int. 67 [1/2], 6–10 (1990)Google Scholar
  306. [4.305]
    T. Sato, K. Haryu, T. Endo, and M. Shimada: High Temperature Oxidation of Hot-Pressed Aluminum Nitride by Water Vapor. J. Mater. Sci. 22 [6], 2277–2280 (1987)CrossRefGoogle Scholar
  307. [4.306]
    P.T.B. Shaffer and T.J. Mroz: Aluminum Nitride. In: Handbook of Advanced Ceramic Materials. (Advanced Refractory Technologies Buffalo NY, 1993)Google Scholar
  308. [4.307]
    E.L. Courtright: Engineering Property Limitations of Structural Ceramics and Ceramic Composites above 1600°C Ceram. Eng. Sci. Proc. 12 [9–10], 1725–1744(1991)CrossRefGoogle Scholar
  309. [4.308]
    A. Lipp, K.A. Schwetz, and K. Hunold: Hexagonal Boron Nitride: Fabrication, Properties, and Applications. J. Eur. Ceram. Soc. 5 [1], 3–9 (1989)CrossRefGoogle Scholar
  310. [4.309]
    P.T.B. Shaffer and A. Goel: Silicon Nitride. In: Handbook of Advanced Ceramic Materials. (Advanced Refractory Technologies Buffalo NY, 1993)Google Scholar
  311. [4.310]
    T. Sato, Y. Kanno, T. Endo: Corrosion of SiC, Si 3 N 4 , and AlN in Molten K 2 SO 4 and K 2 CO 3 Salts. Yogyo Kyokaishi 94 [1], 123–128 (1986)Google Scholar
  312. [4.311]
    M.E. Gulden and A.G. Metcalf: Stress Corrosion of Silicon Nitride. J. Am. Ceram. Soc. 59 [9–10], 391–396 (1976)CrossRefGoogle Scholar
  313. [4.312]
    N.J. Tinghe, J. Son, and R.M. Hu: Corrosion Reactions in SiC Ceramics. Ceram. Eng. Sci. Proc. 8 [7–8], 505–511 (1987)Google Scholar
  314. [4.313]
    D.W. McKee and D. Chatterji: Corrosion of Silicon Carbide in Gases and Alkaline Melts. J. Am. Ceram. Soc. 59 [9–10], 441–444 (1976)CrossRefGoogle Scholar
  315. [4.314]
    G.W. Hallum and T.P. Herbell: Effect of High-Temperature Hydrogen Exposure on Sintered a-SiC Adv. Ceram. Mater. 3 [2], 171–175 (1988)Google Scholar
  316. [4.315]
    G.I. Rudd, S.H. Garofalini, and D.A. Hensley: Atomic Force Microscopy and X-Ray Photoelectron Spectroscopy Investigation of the Onset of Reactions on Alkali Silicate Glass Surfaces. J. Am. Ceram. Soc. 76 [10], 2555–2560(1995)CrossRefGoogle Scholar
  317. [4.316]
    L. Holland: The Properties of Glass Surfaces. (Chapman & Hall London, 1966)Google Scholar
  318. [4.317]
    ASTM standard C225–85 (1990 Vol. 15.02)Google Scholar
  319. [4.318]
    ASTM standard C724–81 (1988 Vol. 15.02)Google Scholar
  320. [4.319]
    ASTM standard C650–83 (1988 Vol. 15.02)Google Scholar
  321. [4.320]
    D.E. Clark and B.K. Zoitos: Corrosion Testing and Characterization. In: Corrosion of Glass, Ceramics and Ceramic Superconductors. D.E. Clark and B.K. Zoitos (eds.). (Noyes Park Ridge NJ, 1992), pp. 51–102Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Murat Bengisu
    • 1
  1. 1.Department of Industrial EngineeringEastern MediterraneanFamagusta TRNCTurkey

Personalised recommendations