Advertisement

Production of Ceramic Bodies

  • Murat Bengisu
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The term consolidation can be defined as producing a dense body to attain ultimate material properties. A majority of methods used for fabricating ceramic bodies, be they monoliths or composites, require various preparatory steps before consolidation. Depending on the densification method as well as the size and shape of the component, a number of preconsolidation methods may be required. In the recent years, research efforts have shown that these preparatory steps can be very important in determining the properties of the final product. In this section, an overview of important preconsolidation processes will be given, and their effects on the product will be discussed.

Keywords

Injection Molding Ceramic Powder American Ceramic Society Ceramic Body Microwave Sinter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [3.1]
    S.G. Malghan: Comminution. In: Engineered Materials Handbook Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 75–82Google Scholar
  2. [3.2]
    J.S. Reed: Introduction to the Principles of Ceramic Processing. (John Wiley & Sons New York, 1988)Google Scholar
  3. [3.3]
    N. Sarkar and G.K. Greminger, Jr.: Methylcellulose Polymers as Multifunctional Processing Aids In Ceramics. Am. Ceram. Soc. Bull. 62 [11], 1280–1283(1983)Google Scholar
  4. [3.4]
    R.D. Nelson: Handbook of Powder Technology, Vol.7: Dispersing Powders in Liquids. (Elsevier New York, 1988)Google Scholar
  5. [3.5]
    D.A. Stanley, L.Y. Sadler III, D.R. Brooks, and M.A. Schwartz: Attrition Milling of Ceramic Oxides. Am. Ceram. Soc. Bull. 53 [11], 813–829 (1974)Google Scholar
  6. [3.6]
    N. Claussen and J. Jahn, Mechanical Properties of Sintered and Hot-Pressed Si 3 N 4 -ZrO 2 Composites, J. Am. Ceram. Soc. 61 [1], 94–95 (1978)Google Scholar
  7. [3.7]
    S. Prochazka: Attrition Milling of Hard Substances to Submicrometer Grain Size. In: Ceramic Powder Science, Advances in Ceramics, Vol.21. G.L. Messing, K.S. Mazdiyasni, J.W. McCauley, and R.A. Haber (eds.). (The American Ceramic Society Westerville OH, 1987), pp. 311–320Google Scholar
  8. [3.8]
    G. von Bernuth: Sample Preparation in Ceramics Laboratories. Ceram. Forum Int. 68 [5], 221–223 (1991)Google Scholar
  9. [3.9]
    C.L. Prasher: Crushing and Grinding Process Handbook. (John Wiley & Sons New York, 1987)Google Scholar
  10. [3.10]
    D. Rickwood: The Theory and Practice of Centrifugation. In: Centrifugation. D. Rickwood (ed.). (IRL Press Oxford England, 1984), pp. 1–43Google Scholar
  11. [3.11]
    M.L. Green: Rheology of Ceramic Oxide Dispersions. (Ceramics Processing Research Laboratory Report No. 18 MIT Department of Materials Science and Engineering Cambridge MA, 1982)Google Scholar
  12. [3.12]
    B.J. Derjaguin, N.V. Churaev, and V.M. Muller: Surface Forces. (Consultants Bureau New York, 1987)Google Scholar
  13. [3.13]
    R.G. Horn: Surface Forces and Their Action in Ceramic Materials. J. Am. Ceram. Soc. 73 [5], 1117–135 (1990)Google Scholar
  14. [3.14]
    J.W. Goodwin: Rheology of Ceramic Materials. Am. Ceram. Soc. Bull. 69 [10], 1694–1698(1990)Google Scholar
  15. [3.15]
    F.M. Fowles: Dispersions of Ceramic Powders in Organic Media. In: Advances in Ceramics, Vol.21: Ceramic Powder Science. G.L. Messing, K.S. Mazdiyasni, J.W. McCauley, and R.A. Haber (eds.). (The American Ceramic Society Westerville OH, 1987), pp. 411–421Google Scholar
  16. [3.16]
    B.V. Derjaguin and L.D. Landau: Theory of Stability of Highly Charged Lyophobic Sols and Adhesion of Highly Charged Particles in Solutions of Electrolytes. Acta Physicochim. URSS 14 [6], 633–662 (1941)Google Scholar
  17. [3.17]
    E.J.W. Verwey and J.Th.G. Overbeek: Theory of Stability of Lyophobic Colloids. (Elsevier Amsterdam, 1941)Google Scholar
  18. [3.18]
    D.W. Fuersteneau, R. Herrera-Urbina, and J.S. Hanson: Adsorption of Processing Additives and the Dispersion of Ceramic Powders. In: Ceramic Transactions, Ceramic Powder Science II. G.L. Messing, E. Fuller, Jr., and H. Hausner (eds.). (The American Ceramic Society Westerville OH, 1987), pp. 333–51Google Scholar
  19. [3.19]
    R. Hogg, T.W. Healy, and D.W. Fuersteneau: Mutual Coagulation of Colloidal Dispersions. Trans. Faraday Soc. 62 [522], 1638–1651 (1966)Google Scholar
  20. [3.20]
    F.M. Fowkes: Dispersions of Ceramic Powders in Organic Media. In: Advances in Ceramics, Vol.21: Ceramic Powder Science. G.L. Messing, K.S. Mazdiyasni, J.W. McCauley, and R.A. Haber (eds.). (The American Ceramic Society Westerville OH, 1987), pp. 411–421Google Scholar
  21. [3.21]
    F.V. Shaw: Spray Drying: A Traditional Process for Advanced Applications. Am. Ceram. Soc. Bull. 69 [9], 1484–1489 (1990)Google Scholar
  22. [3.22]
    A. Hendry: Processing of Engineering Ceramics. Powder Met. 31 [1], 20–22(1988)Google Scholar
  23. [3.23]
    A.E. McHale: Processing Additives. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 116–121Google Scholar
  24. [3.24]
    G.C. Robinson: Additives Assist Fabrication of Ceramics. Ceram. Ind. 138 [4], 53–55 (1992)Google Scholar
  25. [3.25]
    T. Chartier, M. Ferrato, and J.F. Baumard: Debinding of Ceramics: a Review. Ceram. Acta 6 [6], 17–27 (1994)Google Scholar
  26. [3.26]
    L. Hermansson: Organics Removal. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 135–140Google Scholar
  27. [3.27]
    O.J. Whittemore, Jr: Particle Compaction. In: Ceramic Processing Before Firing. G.Y. Onoda, Jr. and L.L. Hench (eds.). (John Wiley & Sons New York, 1978), pp. 343–355Google Scholar
  28. [3.28]
    J.S. Reed and R.B. Runk: Dry Pressing. In: Ceramic Fabrication Processes. F.F.Y. Wang (ed.). (Academic Press New York, 1976), pp. 71–92Google Scholar
  29. [3.29]
    W.M. Price. In: Proc.lst Conf.Compaction and Consolidation of Particulate Matter. A.S. Goldberg (ed.). (Brighton England, 1972)Google Scholar
  30. [3.30]
    R.E. Caligaris, R. Topolevsky, P. Maggi, and F. Brog: Compaction Behavior of Ceramic Powders. Powder Tech. 42, 263–267 (1985)Google Scholar
  31. [3.31]
    S.J. Lukasiewitz and J.S. Redd: Character and Compaction Response of Spray Dried Agglomerates. Am. Ceram. Soc. Bull. 57 [9], 798–805 (1978)Google Scholar
  32. [3.32]
    A.R. Cooper Jr., and L.E. Eaton: Compaction Behavior of Several Ceramic Powders. J. Am. Ceram. Soc. 45 [3], 97–101 (1962)Google Scholar
  33. [3.33]
    B.J. McEntire: Dry Pressing. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991) pp. 141–46Google Scholar
  34. [3.34]
    D.B. Quinn, R.E. Bedford, and F.L. Kennard: Dry Bag Isostatic Pressing and Contour Grinding of Technical Ceramics. In: Advances in Ceramics, Vol.9: Forming of Ceramics. J.A. Mangels and G.L. Messing (eds.). (The American Ceramic Society Columbus OH, 1984), pp. 4–15Google Scholar
  35. [3.35]
    F. Kennard: Cold Isostatic Pressing. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 147–152Google Scholar
  36. [3.36]
    R. Swindells and G. Deplace: Cold Isostatic Pressing Applications. In: Isostatic Pressing Technology. P.J. James (ed.). (Applied Science Publishers Essex England, 1983), pp. 145–167Google Scholar
  37. [3.37]
    F.L. Kennard: Ceramic Component Fabrication. Ceram. Eng. Sci. Proc. 7 [9–10], 1095–1111 (1986)Google Scholar
  38. [3.38]
    J.E. Funk: Slip Casting and Casters. In: Advances in Ceramics, Vol.9: Forming of Ceramics. J.A. Mangels and G.L. Messing (eds.). (The American Ceramic Society Columbus OH, 1984), pp. 76–84Google Scholar
  39. [3.39]
    M. Bengisu and O.T. Inal: Sintering of MgO and MgO-TiC Ceramics by Plasma, Microwave, and Conventional Heating. J. Mater. Sci. 29 [20], 5475–5480(1994)Google Scholar
  40. [3.40]
    R.E. Cowan: Slip Casting. In: Ceramic Fabrication Processes. F.F.Y. Wang (ed.). (Academic Press New York, 1976), pp. 154–171Google Scholar
  41. [3.41]
    C.H. Schilling and I.A. Aksay: Slip Casting. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 153–60Google Scholar
  42. [3.42]
    J.H.D. Hampton, S.B. Savage, and R.A.L. Drew: Experimental Analysis and Modeling of Slip Casting. J. Am. Ceram. Soc. 71 [12], 1040–1045 (1988)Google Scholar
  43. [3.43]
    J.P. Torre and Y. Bigay: Fabrication of Silicon Nitride Parts by Slip Casting. Ceram. Eng. Sci. Proc. 7 [7–8], 893–899 (1986)Google Scholar
  44. [3.44]
    K. Wilfinger and W.R. Cannon: Processing of Transformation Toughened Alumina. Ceram. Eng. Sci. Proc. 7 [9–10], 1169–1181 (1986)Google Scholar
  45. [3.45]
    F.F. Lange, B.I. Davis, and I.A. Aksay: Processing-Related Fracture Origins: HI, Differential Sintering of ZrO 2 Agglomerates in Al 2 O 3 /ZrO 2 Composite. J. Am. Ceram. Soc. 66 [6], 407–408 (1983)Google Scholar
  46. [3.46]
    C.R. Blanchard-Ardid and R.A. Page: The Effect of Ultrasonic Treatments on the Particle Size Distribution and Microstructure of a Slip Cast Al 2 Os In: Ceramic Transactions, Ceramic Powder Science II. G.L. Messing, E. Fuller Jr., and H. Hausner (eds.). (The American Ceramic Society Westerville OH, 1988), pp. 724–732Google Scholar
  47. [3.47]
    J.A. Mangels: The Role of Powder Properties in Ceramic Processing. Ceram. Eng. Sci. Proc. 7 [9–10], 1112–1121 (1986)Google Scholar
  48. [3.48]
    F.L. Kennard: Ceramic Component Fabrication. Ceram. Eng. Sci. Proc. 7 [9–10], 1095–1111 (1986)Google Scholar
  49. [3.49]
    D.W. Richerson: Modern Ceramic Engineering. (Marcel Dekker New York, 1982)Google Scholar
  50. [3.50]
    F. Kools and O. Fiquet: Wet Pressing for Forming Advanced Ceramics. In: Euro Ceramics, Vol. 1: Processing of Ceramics. G. de With, R.A. Terpstra, and R. Metselaar (eds.). (Elsevier Essex England, 1989), pp. 1.258–1.262Google Scholar
  51. [3.51]
    O. Lyckfeldt, E. Liden, M. Persson, R. Carlsson, and P. Apell: Progress in the Fabrication of Si 3 N 4 Turbine Rotors by Pressure Slip Casting. J. Eur. Ceram. Soc. 14 [5], 383–395 (1994)Google Scholar
  52. [3.52]
    E.G. Blanchard: Pressure Casting Improves Productivity. Am. Ceram. Soc. Bull. 67 [10], 1680–83 (1988)Google Scholar
  53. [3.53]
    F.F. Lange: Powder Processing Science and Technology for Increased Reliability. J. Am. Ceram. Soc. 72 [1], 3–15 (1989)Google Scholar
  54. [3.54]
    H.H. Grazzini and D.S. Wilkinson: Slip Casting Under Pressure. Ceram. Eng. Sci. Proc. 13 [7–8], 528–535 (1992)Google Scholar
  55. [3.55]
    S.N. Heavens: Electrophoretic Deposition as a Processing Route for Ceramics. In: Advanced Ceramic Processing Technology, Vol.1. J.G.P. Binner (ed.). (Noyes Park Ridge NJ, 1990)Google Scholar
  56. [3.56]
    R.W. Powers: The Electrophoretic Forming of Beta-Alumina Ceramic. J. Electrochem. Soc. 122 [4], 490–500 (1975)Google Scholar
  57. [3.57]
    R.W. Powers: Ceramic Aspects of Forming Beta Alumina by Electrophoretic Deposition. Am. Ceram. Soc. Bull. 65 [9], 1270–1277 (1986)Google Scholar
  58. [3.58]
    H. Wittwer and H.G. Krüger: Möglichkeiten und Grenzen der Elektrophorese — Possibilities and Limits of Electrophoresis. Ceram. Forum Int. 72 [9], 556–560 (1995)Google Scholar
  59. [3.59]
    J.A. Mangels: Injection Molding Ceramics. Ceram. Eng. Sci. Proc. 3 [9–10], 529–537 (1982)Google Scholar
  60. [3.60]
    B.C. Mutsuddy and R.G. Ford: Ceramic Injection Molding. (Chapman &; Hall London, 1995)Google Scholar
  61. [3.61]
    M.J. Edirishinge: Injection Molding of Ceramics. Powder Met. 6 [6], 367–370(1990)Google Scholar
  62. [3.62]
    J.R. Peshek: Machinery for Injection Molding of Ceramic Shapes. In: Advances in Ceramics, Vol. 9: Forming of Ceramics. J.A. Mangels and G.L. Messing (eds.). (The American Ceramic Society Columbus OH, 1984), pp. 234–238Google Scholar
  63. [3.63]
    B.C. Mutsuddy: Equipment Selection for Injection Molding. Am. Ceram. Soc. Bull. 68 [10], 1796–1802 (1989)Google Scholar
  64. [3.64]
    C.L. Quackenbush, K. French, and J.T. Neil: Fabrication of Sinterable Silicon Nitride by Injection Molding. Ceram. Eng. Sci. Proc. 3 [1–2], 20–34(1982)Google Scholar
  65. [3.65]
    B.C. Mutsuddy: Injection Molding. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 173–180Google Scholar
  66. [3.66]
    R.H. Smoak and R.S. Storm: Iterative Development of Injection Molded Sintered α-SiC Turbine Materials. ASME paper No.79-GT-77, presented at the 24th Annual Gas Turbine Conference (San Diego CA, March 12–15, 1979)Google Scholar
  67. [3.67]
    R.D. Rivers. U.S. Patent 4,113,480 (1978)Google Scholar
  68. [3.68]
    J.E. Schuetz: Methylcellulose Polymers as Binders for Extrusion of Ceramics. Am. Ceram. Soc. Bull. 65 [12], 1556–1559 (1986)Google Scholar
  69. [3.69]
    A.J. Fanelli and R.D. Silvers. U.S.Patent 4,734,237 (1988)Google Scholar
  70. [3.70]
    A.J. Fanelli, R.D. Silvers, W.S. Frei, J.V. Burlew, and G.B. Marsh: New Aqueous Injection Molding Process for Ceramic Powders. J. Am. Ceram. Soc. 72 [10], 1833–1836(1989)Google Scholar
  71. [3.71]
    I. Ruppel: Extrusion. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 166–172Google Scholar
  72. [3.72]
    J.J. Benbow, S.H. Jazayeri, and J. Bridgewater: Ceramic Extrusion Mechanics, the Effect of Paste Formulation and Liquid Phase Rheology on Die-Flow Resistance. In: Ceramic Transactions, Ceramic Powder Science II. G.L. Messing, E. Fuller Jr., and H. Hausner (eds.). (The American Ceramic Society Westerville OH, 1987), pp. 624–634Google Scholar
  73. [3.73]
    P.A. Haas, F.G. Kills, and H. Beutler: Preparation of Reactor Fuels by Sol-gel Processes. Chem. Eng. Progr. Symp. Ser. Nucl. Eng. Part XVIII 63, 17–23(1967)Google Scholar
  74. [3.74]
    K.S. Mazdiyasni, C.T. Lynch, and J.S. Smith: Cubic Phase Stabilization of Translucent Yttria-Zirconia at Very Low Temperature. J. Am. Ceram. Soc. 50 [9], 532–537 (1967)Google Scholar
  75. [3.75]
    G.S. Snow: Fabrication of Transparent Electronic PLZT Ceramics by Atmosphere Sintering. J. Am. Ceram. Soc. 56 [2], 91–96 (1973)Google Scholar
  76. [3.76]
    B.E. Yoldas: Alumina Gels that Form Transparent Al 2 O 3. J. Mater. Sci. 10 [11], 1856–1860(1975)Google Scholar
  77. [3.77]
    B.E. Yoldas: Preparation of Glasses and Ceramics from Metal-Organic Compounds. J. Mater. Sci. 12 [6], 1203–1208 (1977)Google Scholar
  78. [3.78]
    M. Yamane, A. Shinji, and T. Sakaino. Preparation of a Gel From Metal Alkoxide and Its Properties as a Precursor of Oxide Glass. J. Mater. Sci. 13 [4], 865–870 (1978)Google Scholar
  79. [3.79]
    C.J. Brinker and G.W. Scherer: Sol-Gel Science. (Academic Press San Diego CA, 1990)Google Scholar
  80. [3.80]
    S. Sakka and K. Kamiya: Preparation of Shaped Glasses Through Sol-Gel Method. In: Emergent Methods for High Technology Ceramics. T. Davis, H. Palmour, and T. Porter (eds.). (Plenum Press New York, 1984), pp. 83–94Google Scholar
  81. [3.81]
    B.E. Yoldas: Effect of Variation in Polymerized Oxides on Sintering and Crystalline Transformations. J. Am. Ceram. Soc. 65 [8], 387–393 (1977)Google Scholar
  82. [3.82]
    L.L. Hench and J.K. West: The Sol-Gel Process. Chem. Rev. 90 [1], 33–72(1990)Google Scholar
  83. [3.83]
    I.A. Aksay, W.Y. Shih, and M. Sarikaya: Colloidal Processing of Ceramics with Ultrafine Particles. In: Ultrastructure Processing of Advanced Ceramics. J.D. Mackenzie and D.R. Ulrich (eds.). (John Wiley &; Sons New York, 1988), pp. 393–406Google Scholar
  84. [3.84]
    N. Shinohara, D.M. Dabbs, and I.A. Aksay: Infrared Transparent Mullite Through Densification of Monolithic Gels at 1250°C Proc. SPIE. 683, 19 (1986)Google Scholar
  85. [3.85]
    D.R. Uhlmann, B.J.J. Zelinski, and G.E. Wnek: The Ceramist as a Chemist-Opportunities for New Materials. In: Better Ceramics Through Chemistry. C.J. Brinker, D.E. Clark, and D.R. Ulrich (eds.). (Elsevier Science New York, 1984), pp. 59–70Google Scholar
  86. [3.86]
    P. Colomban and L. Magnolles: J. Mater. Sci. 26, 3503–3510 (1991)Google Scholar
  87. [3.87]
    M.A. Janney, S.D. Nunn, C.A. Walls, O.O. Omatete, R.B. Ogle, G.H. Kirby, and A.D. McMillan: Gelcasting. To be published in: The Handbook of Ceramic Engineering. M.N. Rahaman (ed.). (Manuscript from Oak Ridge National Lab. website http://www.ornl.gov/MC-CPG/gelcasting.html)
  88. [3.88]
    A.C. Young, O.O. Omatete, M.A. Janney, and P.A. Menchhofer: Gelcasting of Alumina. J. Am. Ceram. Soc. 74 [3], 612–618 (1991)Google Scholar
  89. [3.89]
    I.A. Aksay, J.T. Staley, and R.K. Prud’homme: Ceramic Processing with Biogenic Additives. In: Biomimetic Materials Chemistry. S. Mann (ed.). (Wiley-VCH New York, 1996), pp. 361–378Google Scholar
  90. [3.90]
    S.L. Morissette and J.A. Lewis: Chemorheology of Aqueous-Based Alumina-Poly (vinyl alcohol) Gelcasting Suspensions. J. Am. Ceram. Soc. 82 [3], 521–528(1999)Google Scholar
  91. [3.91]
    M.A. Huha and J.A. Lewis: Polymer Effects on the Chemorheological and Drying Behavior of Alumina-Poly (vinyl alcohol) Gelcasting Suspensions. J. Am. Ceram. Soc. 83 [8], 1957–1963 (2000)Google Scholar
  92. [3.92]
    A.J. Millan, M.I. Nieto, and R. Moreno: Aqueous Gel-Forming of Silicon Nitride Using Carrageenans. J. Am. Ceram. Soc. 84 [1], (2001) 62–64Google Scholar
  93. [3.93]
    G.V. Franks, S.B. Johnson, and D.E. Dunstan: Novel Gelforming Process for Near Net Shape Ceramic Component Production. J. Aust. Ceram. Soc. 36 [2], 1–5 (2000)Google Scholar
  94. [3.94]
    M. Bengisu, E. Yilmaz, and A. Badreddine: Gelcasting of Ceramic Parts Using Chitin and Chitosan Gels. To be published in: Chitosan in Pharmacy and Chemistry, R.A.A. Muzzarelli (ed.). (ATEC Italy, 2001)Google Scholar
  95. [3.95]
    A. Roosen: Basic Requirements for Tape Casting of Ceramic Powders. In: Ceramic Transactions, Ceramic Powder Science II. G.L. Messing, E. Fuller Jr., and H. Hausner (eds.). (The American Ceramic Society Westerville OH, 1987), pp. 675–92Google Scholar
  96. [3.96]
    R.R. Landham, P. Nahass, D.K. Leung, M. Ungureit, W.E. Rhine, H.K. Bowen, and P. Calvert: Potential Use of Polymerizable Solvents and Dispersants for Tape Casting of Ceramics. Am. Ceram. Soc. Bull. 66 [10], 1513–1516(1987)Google Scholar
  97. [3.97]
    K.P. Plucknett, C.H. Caceres, and D.S. Wilkinson: Tape Casting of Fine Alumina/Zirconia Powders for Composite Fabrication. J. Am. Ceram. Soc. 77 [8], 2137–2144 (1994)Google Scholar
  98. [3.98]
    E.A. Groat and T.J. Mroz Jr.: Aqueous Processing of AlN Powders. Ceram. Ind. 140 [3], 34–38 (1993)Google Scholar
  99. [3.99]
    E. Streicher and T. Chartier. Influence of Organic Components on Properties of Tape-Cast Aluminum Nitride Substrates. Ceram. Int. 16 [4], 247–252(1990)Google Scholar
  100. [3.100]
    M. Descamps, G. Ringuet, D. Leger, and B. Thierry: Tape-Casting: Relationship Between Organic Constituents and the Physical and Mechanical Properties of Tapes. J. Eur. Ceram. Soc. 15 [4], 357–362 (1995)Google Scholar
  101. [3.101]
    E.P. Hyatt: Continuous Tape Casting for Small Volumes. Am. Ceram. Soc. Bull. 68 [41], 69–70 (1989)Google Scholar
  102. [3.102]
    G.A. Steinlage, R.K. Roeder, K.P. Trumble, and K.J. Bowman: Centrifugal Slip Casting of Components. Am. Ceram. Soc. Bull. 75 [5], 92–94(1996)Google Scholar
  103. [3.103]
    W. Huisman, T. Graule, and L.J. Gauckler: Alumina of High Reliability by Centrifugal Casting. J. Eur. Ceram. Soc. 15 [9], 811–821 (1995)Google Scholar
  104. [3.104]
    W. Huisman, T. Graule, and L.J. Gauckler: Centrifugal Slip Casting of Zirconia (TIP). J. Eur. Ceram. Soc. 13 [1], 33–39 (1994)Google Scholar
  105. [3.105]
    K.M. Haunton, J.K. Wright, and J.R.G. Evans: The Vacuum Forming of Ceramics. Br. Ceram. Trans. J. 89 [2], 53–56 (1990)Google Scholar
  106. [3.106]
    F.F. Lange: Influence of Particle Arrangement on Sintering: A Thermodynamic Viewpoint. In: 13th International Conference on Science of Ceramics. P. Odier, F. Cabannes, and B. Cales (eds.). (Les Editions de Physique Les Unix Cedex France, 1986) pp.C1–205–217Google Scholar
  107. [3.107]
    M.P. Harmer: Science of Sintering as Related to Ceramic Powder Processing. In: Ceramic Transactions, Ceramic Powder Science II. G.L. Messing, E. Fuller Jr., and H. Hausner (eds.). (American Ceramic Society Westerville OH, 1987), pp. 824–839Google Scholar
  108. [3.108]
    M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni. Computer Simulation of Grain-Growth-I.Kinetics. Acta Metall. 32 [5], 783–791 (1984)Google Scholar
  109. [3.109]
    G.N. Hassold, I.W. Chen, and D.J. Srolovitz. Computer Simulation of Final Stage Sintering: I, Model, Kinetics, and Microstructure. J. Am. Ceram. Soc. 73 [10], 2857–2864 (1990)Google Scholar
  110. [3.110]
    R.T. DeHoff: A Cell Model for Microstructural Evolution During Sintering. In: Materials Science Research, Vol.16: Sintering and Heterogeneous Catalysis. G.C. Kuczynski, A.E. Miller, and G.A. Sargent (eds.). (Plenum Press New York, 1984), pp. 23–24Google Scholar
  111. [3.111]
    G.C. Kuczynski: Statistical Approach to the Theory of Sintering. In: Materials Science Research, Vol.10. G.C. Kuczynski (ed.). (Plenum Press New York, 1975), pp. 325–337Google Scholar
  112. [3.112]
    R.L. Coble: Effects of Particle-Size Distribution in Initial-Stage Sintering. J. Am. Ceram. Soc. 56 [9], 461–466 (1973)Google Scholar
  113. [3.113]
    D.L. Johnson: Comment on Temperature-Gradient Driven Diffusion in Rapid-Rate Sintering. J. Am. Ceram. Soc. 73 [8], 2576–2578 (1990)Google Scholar
  114. [3.114]
    G.C. Kuczynski: Statistical Theory of Pore Shrinkage and Grain Growth During Powder Compact Densification. In: Ceramic Microstructures ′76. R.M. Fulrath and J.A. Pask (eds.). (Westview Press Boulder CO, 1977), pp. 233–245Google Scholar
  115. [3.115]
    T.T. Fang and H. Palmour III: Useful Extensions of the Statistical Theory of Sintering. Ceram. Intern. 15 [6], 329–335 (1989)Google Scholar
  116. [3.116]
    T.M. Hare: Statistics of Early Sintering and Rearrangement by Computer Simulation. In: Materials Science Research Vol.13: Sintering Processes. G.C. Kuczynski (ed.). (Plenum Press New York, 1980), pp. 77–93Google Scholar
  117. [3.117]
    D.J. Srolovitz, M.P. Anderson, P.S. Sahni, and G.S. Grest: Computer Simulation of Grain Growth II. Grain Size Distribution, Topology, and Local Dynamics. Acta Metall. 32 [5], 793–802 (1984)Google Scholar
  118. [3.118]
    D.J. Srolovitz, G.S. Gretz, and M.P. Anderson: Computer Simulation of Recrystallization, I. Homogeneous Nucleation and Growth. Acta Metall. 34 [9], 1833–1845(1986)Google Scholar
  119. [3.119]
    D.J. Srolovitz, G.S. Gretz, M.P. Anderson, and A.D. Rollett: Computer Simulation of Recrystallization, II. Heterogeneous Nucleation and Growth. Acta Metall. 36 [8], 2115–2128 (1988)Google Scholar
  120. [3.120]
    I.W. Chen, G.N. Hassold, and D.J. Srolovitz: Computer Simulation of Final-Stage Sintering: II, Influence of Initial Pore Size. J. Am. Ceram. Soc. 73 [10], 2865–2872 (1990)Google Scholar
  121. [3.121]
    R.L. Coble: Sintering Crystalline Solids. J. Appl. Phys. 32 [5], 793–799 (1961)Google Scholar
  122. [3.122]
    R.L. Coble and J.E. Burke: Sintering in Ceramics. In: Progress in Ceramic Science, Vol.3. J.E. Burke (ed.). (Pergamon Press London, 1963), p. 197Google Scholar
  123. [3.123]
    G. Rossi and J.E. Burke: Influence of Additives on the Microstructure of Sintered Al 2 O 3. J. Am. Ceram. Soc. 56 [12], 654–659 (1973)Google Scholar
  124. [3.124]
    M.P. Harmer and R.J. Brook: The Effect of MgO Additions on the Kinetics of Hot Pressing in Al 2 O s J. Mater. Sci. 15 [12], 3017–3024 (1980)Google Scholar
  125. [3.125]
    J.E. Burke: Control of Grain Boundary Mobility. In: Ceramic Transactions, Vol.7: Sintering of Advanced Ceramics. C.A. Handwerker, J.E. Blendell, and W. Kaysser (eds.). (The American Ceramic Society Westerville OH, 1990), pp. 215–228Google Scholar
  126. [3.126]
    R.D. Monohan and J.W. Halloran: Single Crystal Boundary Migration in Hot-Pressed Aluminum Oxide. J. Am. Ceram. Soc. 62 [11–12], 564–567 (1979)Google Scholar
  127. [3.127]
    J.E. Burke, K.W. Lay, and S. Prochazka: The Effect of MgO on the Mobility of Grain Boundaries and Pores in Aluminum Oxides In: Materials Science Research, Vol.13: Sintering Processes. G.C. Kuczynski (ed.). (Plenum Press New York, 1980), pp. 417–425Google Scholar
  128. [3.128]
    K.A. Berry and M.P. Harmer: Effect of MgO Solute on Microstructure Development in Alumina. J. Am. Ceram. Soc. 69 [2], 143–149 (1986)Google Scholar
  129. [3.129]
    D.L. Johnson: Impurity Effects in the Initial Sintering of Oxides. In: Sintering and Related Phenomena. G.C. Kuczynski, N.A. Horton, and C.F. Gibbon (eds.). (Gordon & Breach New York, 1967), p. 393Google Scholar
  130. [3.130]
    S. Hori and R. Kurita: Influence of Small ZrO 2 Additions on the Microstructure and Mechanical Properties of Al 2 O 3. In: Science and Technology of ZrO 2 III. S. Somiya, N. Yamamoto, and H. Yanagida (eds.). (The American Ceramic Society Westerville OH, 1988), pp. 423–439Google Scholar
  131. [3.131]
    F.F. Lange and M.M. Hirlinger: Hindrance of Grain Growth in Al 2 O 3 by ZrO 2 Inclusions. J. Am. Ceram. Soc. 67 [2], 164–168 (1984)Google Scholar
  132. [3.132]
    J. Wang and R. Stevens: Review-Zirconia Toughened Alumina (ZTA) Ceramics. J. Mater. Sci. 25 [10], 3421–3440 (1990)Google Scholar
  133. [3.133]
    F.F. Lange and M.M. Hirlinger: Grain-Growth in Two-Phase Ceramics: Al 2 O 3 Inclusions in Zr0 2 J. Am. Ceram. Soc. 70 [11], 827–830 (1987)Google Scholar
  134. [3.134]
    M. Bengisu and O.T. Inal: Rapid-Rate Sintering of Particulate Ceramic Matrix Composites. Ceram. Int. 17 [3], 187–198 (1991)Google Scholar
  135. [3.135]
    S. Prochazka and C.F. Bobik: Sintering of Aluminum Nitride. In: Materials Science Research, Vol.13: Sintering Processes. G.C. Kuczynski (ed.). (Plenum Press New York, 1980), pp. 321–331Google Scholar
  136. [3.136]
    B. Mikijely and O.J. Whittemore: Grain Cuboidization During Sintering of MgO-MgCl 2 (1%). Am. Ceram. Soc. Bull. 66 [5], 809–812 (1987)Google Scholar
  137. [3.137]
    P.H. Duvigneaud and D. Reinhard: Activated Sintering of Tin Oxide. In: Science of Sintering, Vol.12. P. Vincenzini (ed.). (Ceramurgica Faenza Italy, 1980), p. 287Google Scholar
  138. [3.138]
    V. Tikare: Microstructural Evolution of Si 3 N 4 During Sintering. Presented in: 92nd Annual Ceramic Society Meeting (Dallas TX, 1990).Google Scholar
  139. [3.139]
    S. Prochazka: Sintering of Silicon Carbide. In: Ceramics for High-Performance Applications. J.J. Burke, A.E. Gorum, and R.N. Katz (eds.). (Brook Hill Chestnut Hill MA, 1974), pp. 239–252Google Scholar
  140. [3.140]
    R. Hamminger, G. Grathwohl, and F. Thummler: Microanalytical Investigation of Sintered SiC, Part 1: Bulk Material and Inclusions. J. Mater. Sci. 18 [2], 353–364 (1983)Google Scholar
  141. [3.141]
    R. Hamminger, G. Grathwohl, and F. Thummler: Microanalytical Investigation of Sintered SiC, Part 2: Study of the Grain Boundaries of Sintered SiC by High Resolution Auger Electron Spectroscopy. J. Mater. Sci. 18 [2], 3154–3160 (1983)Google Scholar
  142. [3.142]
    T. Mizrah, M. Hoffman, and L. Gauckler: Pressureless Sintering of α-SiC. Powder Met. Int. 16 [5], 217–220 (1984)Google Scholar
  143. [3.143]
    S.L. Dole and S. Prochazka: Densification and Microstructure Development in Boron Carbide. Ceram. Eng. Sci. Proc. 6 [7–8], 1151–1160(1985)Google Scholar
  144. [3.144]
    R. Hamminger, G. Grathwohl, and F. Thummler: Examination of Carbon Inclusions in Sintered Silicon Carbide. Int. J. High Tech. Ceram. 3 [2], 129–141 (1987)Google Scholar
  145. [3.145]
    M. Rühle and G. Petzow: Microstructure and Chemical Composition of Grain Boundaries in Ceramics. In: Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems, Vol.14. J. Pask and E. Evans (eds.). (Plenum Press New York, 1981), p. 167Google Scholar
  146. [3.146]
    G.H. Wroblewska, E. Nold, and F. Thummler: The Role of Boron and Carbon Additions on the Microstructural Development of Pressureless Sintered Silicon Carbide. Ceram. Int. 16 [4], 201–209 (1990)Google Scholar
  147. [3.147]
    D.P. Birnie III: A Model for Silicon Self-Diffusion in Silicon Carbide: Anti-Site Defect Motion. J. Am. Ceram. Soc. 6 [2], C33–35 (1986)Google Scholar
  148. [3.148]
    K. Schwetz and G. Vogt: Process for the Production of Dense Sintered Articles of Polycrystalline Boron Carbide. (U.S. Patent 4,195,066 May 25, 1980)Google Scholar
  149. [3.149]
    R.L. Lange, Z.A. Munir, and J.B. Holt: Sintering Kinetics of Pure and Doped Boron Carbide. In: Materials Science Research, Vol.13: Sintering Processes. G.C. Kuczynski (ed.). (Plenum Press New York, 1980), pp. 311–320Google Scholar
  150. [3.150]
    D.R. Clarke: Grain Boundaries in Polyphase Ceramics. In: International Conference on the Structure and Properties of Internal Interfaces. M. Ruhle, R.W. Baluffi, H. Fischmeister, and S.L. Sass (eds.). (Les Editions de Physique Les Unix Cedex France, 1985), pp. C4–51–59Google Scholar
  151. [3.151]
    O. Ünal, J.J. Petrovic, and T.E. Mitchell: Mechanical Properties of Hot Isostatically Pressed Si 3 N 4 and Si 3 N 4 /SiC Composites. J. Mater. Res. 8 [3], 626–634(1993)Google Scholar
  152. [3.152]
    P.A. Morris: Impurities in Ceramics: Processing and Effects on Properties. In: Ceramic Transaction, Vol.7: Sintering of Advanced Ceramics. C.A. Handwerker and J.E. Blendell (eds.). (The American Ceramic Society Westerville OH, 1990), pp. 50–85Google Scholar
  153. [3.153]
    E.A. Barringer and H.K. Bowen: Formation, Packing, and Sintering of Monodisperse TiO 2 Powders. J. Am. Ceram. Soc. 65 [12], C199–201 (1982)Google Scholar
  154. [3.154]
    C. Han, A. Aksay, and O.J. Whittemore: Characterization of Microstructural Evolution by Mercury Porosimetry. In: Advances in Materials Characterization II. R.L. Snyder, R.A. Condrate Sr., and P.F. Johnson (eds.). (Plenum Press New York, 1985), pp. 339–347Google Scholar
  155. [3.155]
    T.S. Yeh and M.D. Sacks. Effect of Particle Size Distribution on the Sintering of Alumina. J. Am. Ceram. Soc. 71 [12], C-484–487 (1988)Google Scholar
  156. [3.156]
    T.S. Yeh and M.D. Sacks: Effect of Green Microstructure on the Sintering of Alumina. In: Ceramic Transaction, Vol.7: Sintering of Advanced Ceramics. C.A. Handwerker and J.E. Blendell (eds.). (The American Ceramic Society Westerville OH, 1990), pp. 309–331Google Scholar
  157. [3.157]
    S.J. Milne, M. Patel, and E. Dickinson: Experimental Studies of Particle Packing and Sintering Behavior of Monosize and Bimodal Spherical Silica Powders. J. Eur. Ceram. Soc. 11 [1], 1–7 (1993)Google Scholar
  158. [3.158]
    J.M. Ting and R.Y. Lin: Effect of Particle Size Distribution on Sintering, Part II. Sintering of Alumina. J. Mater. Sci. 30 [9], 2382–2389 (1995)Google Scholar
  159. [3.159]
    M. Bengisu: Densification and Mechanical Properties of Whisker and/or Zirconia Toughened, Effect of Shock Treatment and Consolidation Method. Ph.D. Thesis. (New Mexico Institute of Mining and Technology Socorro NM, 1992)Google Scholar
  160. [3.160]
    H. Hahn, J. Logas, and R.S. Averback: Sintering Characteristics of Nanocrystalline TiO 2. J. Mater. Res. 5 [3], 609–614 (1990)Google Scholar
  161. [3.161]
    I.A. Aksay, F.F. Lange, and B.I. Davis: Uniformity of Al 2 O 3 -ZrO 2 Composites by Colloidal Filtration. J. Am. Ceram. Soc. 10, C190–192 (1983)Google Scholar
  162. [3.162]
    Y. Zhou, R.J. Phillips, and J.A. Switzer: Electrochemical Synthesis and Sintering of Nanocrystalline Cerium(IV) Oxide Powders. J. Am. Ceram. Soc. 78 [4], 981–985 (1995)Google Scholar
  163. [3.163]
    K. Haberko: Characteristics and Sintering Behavior of ZrO 2 Ultrafine Powders. Ceram. Int. 5 [4], 148–154 (1979)Google Scholar
  164. [3.164]
    A. Roosen and H. Hausner: Sintering Kinetics of ZrO 2 Powders. In: Science and Technology of Zirconia II N. Claussen, M. Ruhle, and A.H. Heuer (eds.). (The American Ceramic Society Columbus OH, 1984), pp. 714–726Google Scholar
  165. [3.165]
    F.F. Lange and B.I. Davis: Sinterability of ZrO 2 and Al 2 O 3 Powders, the Role of Pore Coordination Number Distribution. In: Science and Technology of Zirconia II N. Claussen, M. Ruhle, and A.H. Heuer (eds.). (The American Ceramic Society Columbus OH, 1984), pp. 699–713Google Scholar
  166. [3.166]
    W.D. Kingery and B. Francois: Sintering of Crystalline Oxides I: Interaction Between Grain Boundaries and Pores. In: Sintering and Related Phenomena. G.C. Kuczynski, N.A. Horton, and C.F. Gibbon (eds.). (Gordon & Breach New York, 1967), pp. 471–498Google Scholar
  167. [3.167]
    C.H. Hsueh, A.G. Evans, and R.L. Coble: Microstructure Development During Final/Intermediate Stage Sintering-I. Pore/Grain Boundary Separation. Acta Metall. 30 [7], 1269–1279 (1982)Google Scholar
  168. [3.168]
    C.A. Handwerker, R.M. Cannon, and R.L. Coble. Final-Stage Sintering of MgO. In: Advances in Ceramics, Vol.10: Structure and Properties of MgO and Al 2 O 3 Ceramics. W.D. Kingery (ed.). (The American Ceramic Society Columbus OH, 1984), pp. 619–643Google Scholar
  169. [3.169]
    S. Wu, E. Gilbart, and R.J. Brook: Solid State Sintering: The Attainment of High Density. In: Advances in Ceramics, Vol.10: Structure and Properties of MgO and Al 2 O 3 Ceramics. W.D. Kingery (ed.). (The American Ceramic Society Columbus OH, 1984), pp. 574–582Google Scholar
  170. [3.170]
    C.E.G. Bennett, N.A. McKinnon and L.S. Williams: Sintering in Gas Discharges. Nature 217 [5135], 1287–1288 (1968)Google Scholar
  171. [3.171]
    D.L. Johnson and R.A. Rizzo: Plasma Sintering of β”-Alumina. Am. Ceram. Soc. Bull. 59 [4], 467–472 (1982)Google Scholar
  172. [3.172]
    K. Upadhya: An Innovative Technique for Plasma Sintering of Ceramics and Composite Materials. Am. Ceram. Soc. Bull. 67 [10], 1691–1694 (1988)Google Scholar
  173. [3.173]
    T.T. Meek, R.D. Blake, and J.J. Petrovic: Microwave Sintering of Al 2 O 3 and Al 2 O 3 -SiC Whisker Composites. Ceram. Eng. Sci. Proc. 8 [7–8], 861–871 (1987)Google Scholar
  174. [3.174]
    J. Wilson and S.M. Kunz: Microwave Sintering of Partially Stabilized Zirconia. J. Am. Ceram. Soc. 71 [1], C-40–41 (1988)Google Scholar
  175. [3.175]
    A. Morrel and A. Hermosin: Fast Sintering of Soft Mn-Zn and Ni-Zn Ferrite Pot Cores. Am. Ceram. Soc. Bull. 59 [6], 626–629 (1980)Google Scholar
  176. [3.176]
    D.L. Johnson: Ultra Rapid Sintering. In: Materials Science Research, Vol.16: Sintering and Heterogeneous Catalysis. G.C. Kuczynski, A.E. Miller, and G.A. Sargent (eds.). (Plenum Press NY, 1984), pp. 243–252Google Scholar
  177. [3.177]
    D.E. Garcia, J. Seidel, R. Janssen, and N. Claussen: Fast Firing of Alumina. J. Eur. Ceram. Soc. 15 [10], 935–938 (1995)Google Scholar
  178. [3.178]
    J.A. Varela, O.J. Whittemore, and E. Longo: Pore Size Evolution During Sintering of Ceramic Oxides. Ceram. Int. 16 [3], 177–189 (1990)Google Scholar
  179. [3.179]
    R.L. Coble: Sintering of Alumina: Effect of Atmospheres. J. Am. Ceram. Soc. 45 [3], 123–127(1962)Google Scholar
  180. [3.180]
    S. Prochazka, C.A. Johnson, and R.A. Giddings: Atmosphere Effects in Sintering of Silicon Carbide. In: Proceedings of the International Symposium, Factors in Densification and Sintering of Oxide and Non-Oxide Ceramics. S. Somiya and S. Saito (eds.). (Association for Science Documents Information Tokyo Institute of Technology Okayama Meguro Japan, 1978), pp. 366–381Google Scholar
  181. [3.181]
    G.J. Ghorra: Theory of Fast Firing. Ceram. Eng. Sci. Proc. 14 [1–2], 77–115(1993)Google Scholar
  182. [3.182]
    F.F. Lange: Transformation Toughening, Part 4: Fabrication, Fracture Toughness, and Strength of Al 2 O 3 -ZrO 2 Composites. J. Mater. Sci. 17 [1], 247–254(1982)Google Scholar
  183. [3.183]
    C.J. McHargue, H. Naramoto, C.W. White, J.M. Williams, P.S. Sklad, and P. Angelini: Structure of Ceramic Surfaces Modified by Ion Beam Techniques. In: Materials Science Research, Vol.17. R.F. Davis, H. Palmour III, and R.L. Porter (eds.). (Plenum Press New York, 1984), pp. 519–31Google Scholar
  184. [3.184]
    C.J. McHargue: Structure and Mechanical Properties of Ion Implanted Ceramics. Nucl. Inst. Meth. Phys. Res. B19/20, 797–804 (1987)Google Scholar
  185. [3.185]
    B. Manley, J.B. Holt, and Z.A. Munir: Sintering of Combustion Synthesized Titanium Carbide. In: Materials Science Research, Vol.16: Sintering and Heterogeneous Catalysis. G.C. Kuczynski, A.E. Miller, and G.A. Sargent (eds.). (Plenum Press New York, 1984), pp. 303–316Google Scholar
  186. [3.186]
    M. Ouabdesselam and Z.A. Munir: The Sintering of Combustion Synthesized Titanium Diboride. J. Mater. Sci. 22 [5], 1799–1807 (1987)Google Scholar
  187. [3.187]
    J.E. Bailey, D. Lewis, Z.M. Librant, and L.J. Porter: Phase Transformations in Milled Zirconia. Trans. J. Brit. Ceram. Soc. 71, 23–30(1972)Google Scholar
  188. [3.188]
    O.R. Bergmann and J. Barrington: Effects of Shock Waves on Ceramic Materials. J. Am. Ceram. Soc. 49 [9], 502–507 (1966)Google Scholar
  189. [3.189]
    S. Somiya, M. Yoshimura, S. Fujiwara, K.I. Kondo, and A. Sawaoka: Hot Isostatic Pressing of Shocked Si 3 N 4 Powder. J. Am. Ceram. Soc. 67 [3], C-51–52 (1984)Google Scholar
  190. [3.190]
    E.K. Beauchamp: Shock Activated Sintering. In: High Pressure Explosive Processing of Ceramics. R.A. Graham and A.B. Sawaoka (eds.). (Trans Tech Zürich Switzerland, 1987), pp. 141–174Google Scholar
  191. [3.191]
    E.K. Beauchamp and M.J. Carr: Hot Pressing of Shock Modified Powders. In: High Pressure Explosive Processing of Ceramics. R.A. Graham and A.B. Sawaoka (eds.). (Trans Tech Zürich Switzerland, 1987), pp. 174–206Google Scholar
  192. [3.192]
    C.S. Yust and L.A. Harris: Observation of Dislocation and Twins in Explosively Compacted Alumina. In: Shock Waves and High Strain-Rate Phenomena in Metals; Concepts and Applications. M.A. Meyers and L.E. Murr (eds.). (Plenum Press New York, 1981), pp. 881–894Google Scholar
  193. [3.193]
    H. Palmour III, T.M. Hare, A.D. Batchelor, K.Y. Kim, K.L. More, and T.T. Fang: Sintering of Shock-Conditioned Materials. In: Advances in Ceramics, Vol.10: Structure and Properties of MgO and Al 2 O 3 Ceramics. W.D. Kingery (ed.). (The American Ceramic Society Columbus OH, 1984), pp. 506–525Google Scholar
  194. [3.194]
    E.K. Beuchamp, R.E. Loehman, R.A. Graham, B. Morosin, and E.L. Venturini: Densification Kinetics of Shock-Activated Nitrides. In: Emergent Process Methods for High-Technology Ceramics, Vol.17. R.F. Davis, H. Palmour III, and R.L. Porter. (Plenum Publication New York, 1984), pp. 735–748Google Scholar
  195. [3.195]
    R. Prummer and G. Ziegler: Structural Changes in the Explosive Compaction of Alumina Powders. Ber. Deutsche Keram. Ges. 51, 343–347(1974)Google Scholar
  196. [3.196]
    B. Morosin, R.A. Graham, and E.K. Beauchamp: In: Final Report of the DARPA Dynamic Materials Synthesis and Consolidation Program, Vol.11 Shock-Activated Sintering. C.F. Cline (ed.). (Lawrence Livermore Laboratory Report UCID-19663–85, June 1985), pp. 138–368Google Scholar
  197. [3.197]
    T.H. Hare, K.L. More, A.D. Batchelor, and H. Palmour III: Sintering Behavior of Overcompacted Shock-Conditioned Alumina Powder. In: Materials Science Research, Vol.16: Sintering and Heterogeneous Catalysis. G.C. Kuczynski, A.E. Miller, and G.A. Sargent (eds.). (Plenum Press New York, 1984), pp. 265–279Google Scholar
  198. [3.198]
    W.D. Kingery: Densification During Sintering in the Presence of a Liquid Phase, I.Theory J. App. Phys. 30 [3], 301–306 (1959)Google Scholar
  199. [3.199]
    R.M. German: Liquid Phase Sintering. (Plenum Press New York, 1985)Google Scholar
  200. [3.200]
    W.D. Kingery and M.D. Narasimhan: Densification During Sintering in the Presence of a Liquid Phase. II Experimental. J. Appl. Phys. 30 [1], 307–310(1950)Google Scholar
  201. [3.201]
    W.D. Kingery, E. Niki, and M.D. Narasimhan: Sintering of Oxide and Carbide-Metal Compositions in Presence of a Liquid Phase. J. Am. Ceram. Soc. 44 [1], 29–35 (1961)Google Scholar
  202. [3.202]
    V.K. Singh: Sintering of Alumina in the Presence of a Liquid Phase. Trans. Ind. Ceram. Soc. 37 [2], 55–57 (1978)Google Scholar
  203. [3.203]
    W.J. Huppmann, S. Pejornik, and S.N. Horn: Rearrangement During Liquid Phase Sintering of Ceramics. In: Materials Science Research, Vol.11: Processing of Crystalline Ceramics. H. Palmour, R.F. Davis, and T.M. Hare (eds.). (Plenum Press New York, 1979), p. 233Google Scholar
  204. [3.204]
    W.J. Huppmann and G. Petzow: The Elementary Mechanisms of Liquid Phase Sintering. In: Materials Science Research, Vol.13: Sintering Processes. G.C. Kuczynski (ed.). (Plenum Press New York, 1980), pp. 189–201Google Scholar
  205. [3.205]
    K.G. Ewsuk: Consolidation of Bulk Ceramics. In: Characterization of Ceramics. R.E. Loehman (ed.). (Butterworth-Heinemann Stoneham MA, 1993)Google Scholar
  206. [3.206]
    O-H. Kwon: Liquid Phase Sintering. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 285–290Google Scholar
  207. [3.207]
    W.D.G. Boecker, R. Hamminger, J. Heinrich, J. Huber, and A. Roosen: Covalent High-Performance Ceramics. Adv. Mater. 4 [3], 169–178 (1992)Google Scholar
  208. [3.208]
    F.K. van Dijen and E. Mayer: Liquid Phase Sintering of Silicon Carbide. J. Eur. Ceram. Soc. 16 [3], 413–420 (1996)Google Scholar
  209. [3.209]
    E. Dorre and H. Hubner: Alumina-Processing, Properties, and Applications. (Springer-Verlag Berlin, 1984)Google Scholar
  210. [3.210]
    C. Herring, Diffusional Viscosity of a Polycrystalline Solid, J. App. Phys., 21 437–45 (1950)Google Scholar
  211. [3.211]
    S. Suresh and J.R. Brockenbrough: A Theory for Creep by Interfacial Flaw Growth in Ceramics and Ceramic Composites. Acta Metall. 38 [1], 55–68(1990)Google Scholar
  212. [3.212]
    R.L. Coble: Diffusion Models for Hot Pressing with Surface Energy and Pressure Effects as Driving Forces. J. Appl. Phys. 41 [12], 4798–4807 (1970)Google Scholar
  213. [3.213]
    W.D. Kingery, H.K. Bowen, and D.R. Uhlmann: Introduction to Ceramics. (John Wiley &; Sons New York, 1976)Google Scholar
  214. [3.214]
    M.R. Notis, R.H. Smoak, and V. Krishnamachari: Interpretation of Hot Pressing Kinetics by Densification Mapping Techniques. In: Materials Science Research, Vol.10: Sintering and Catalysis. G.C. Kuczynski (ed.). (Plenum Press New York, 1975), pp. 493–507Google Scholar
  215. [3.215]
    M.F. Ashby: A First Report on Deformation-Mechanism Maps. Acta Metall. 20 [7], 887–897 (1972)Google Scholar
  216. [3.216]
    H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps. (Pergamon Press Oxford England, 1982)Google Scholar
  217. [3.217]
    K.H. Hardtl: Gas Isostatic Pressing Without Molds. Am. Ceram. Soc. Bull. 54 [2], 201–205 (1975)Google Scholar
  218. [3.218]
    H.T. Larker, L. Hermansson, and J. Adlerborn: Hot-Isostatic Pressing and Its Applicability to Silicon Carbide and Boron Carbide. Ind. Ceram. 8 [1], 17–19(1988)Google Scholar
  219. [3.219]
    W.A. Kaysser: Present State of Modeling of Hot Isostatic Pressing. In: Hot Isostatic Pressing: Theory and Applications. R.J. Schaefer and M. Linzer (eds.). (ASM International Materials Park OH, 1991), pp. 1–13Google Scholar
  220. [3.220]
    L.J. Bjork and A.G. Hermansson: Hot Isostatically Pressed Alumina-Silicon Carbide-Whisker Composites. J. Am. Ceram. Soc. 72 [8], 1436–1438(1989)Google Scholar
  221. [3.221]
    P.A. Janeway: HIP Plays a Unique Role in Materials Processing. Ceram. Ind. 138 [4], 35–37 (1992)Google Scholar
  222. [3.222]
    J. Adlerborn, M. Burstrom, L. Hermansson, and H.T. Larker: Development of High Temperature High Strength Silicon Nitride by Glass Encapsulated Hot Isostatic Pressing. Mater. Des. 8 [4], 229–232 (1987)Google Scholar
  223. [3.223]
    K. Uematsu, K. Itakura, N. Uchida, K. Saito, A. Miyamoto, and T. Miyashita: Hot Isostatic Pressing of Alumina and Examination of the Hot Isostatic Pressing Map. J. Am. Ceram. Soc. 73 [1], 74–78 (1990)Google Scholar
  224. [3.224]
    A.S. Helle, K.E. Easterling, and M.F. Ashby: Hot-Isostatic Pressing Diagrams: New Developments. Acta Metall. 33 [2], 2163–2174 (1985)Google Scholar
  225. [3.225]
    D.G. Morris: Bonding Processes During the Dynamic Compaction of Metallic Powders. Mater. Sci. Eng. 57 [2], 187–195 (1983)Google Scholar
  226. [3.226]
    C.L. Hoenig and C.S. Yust: Explosive Compaction of AlN, Amorphous Si 3 N 4 , Boron, and Al 2 O 3 Ceramics. Am. Ceram. Soc. Bull. 60 [11], 1175–1224(1981)Google Scholar
  227. [3.227]
    T. Akashi and A.B. Sawaoka: Dynamic Compaction of Cubic Boron Nitride Powders. J. Am. Ceram. Soc. 69 [4], C-78–80 (1986)Google Scholar
  228. [3.228]
    S. Soga, K. Kondo, A. Sawaoka, and Y. Tanaka: Shock Compaction of TiN-TiC Powders. J. Mater. Sci. Lett. 2 [11], 673–674 (1983)Google Scholar
  229. [3.229]
    M. Bengisu and O.T. Inal: Densification and Mechanical Properties of Shock Treated Alumina and its Composites. J. Mater. Sci. 29 [18], 4824–4833 (1994)Google Scholar
  230. [3.230]
    J.H. Adair, R.R. Wills, and V.D. Linse. Dynamic Compaction of Ceramic owders. In: Emergent Process Methods for High-Technology Ceramics, Vol.17. R.F. Davis, H. Palmour III, and R.L. Porter (eds.). (Plenum Publication New York, 1984), pp. 639–642Google Scholar
  231. [3.231]
    M. Bengisu, O.T. Inal, and J.R. Hellmann: Effect of Dynamic ompaction on the Retention of Tetragonal Zirconia and Mechanical roperties of Al 2 O 3 -ZrO 2 Composites. J. Am. Ceram. Soc. 73 [2], 346–351 (1990)Google Scholar
  232. [3.232]
    B. Tunaboylu and J. McKittrick: Dynamic Compaction of Al 2 O 3 -ZrO 2 ompositions. J. Am. Ceram. Soc. 77 [6], 1605–1612 (1994)Google Scholar
  233. [3.233]
    L.J. Kecskes, T. Kottke, and A. Niiler: Microstructural Properties of Combustion Synthesized and Dynamically Consolidated Titanium Diboride and Titanium Carbide. J. Am. Ceram. Soc. 73 [5], 1274–1282 (1990)Google Scholar
  234. [3.234]
    J.B. Holt: The Use of Exothermic Reactions in the Synthesis and Densification of Ceramic Materials. MRS Bull. 12 [7], 59–64 (1987)Google Scholar
  235. [3.235]
    M.E. Washburn and W.S. Coblenz: Reaction-Formed Ceramics. Am.Ceram. Soc. Bull. 67 [3], 56–63 (1988)Google Scholar
  236. [3.236]
    J. A. Mangels and G.J. Tennenhouse: Densification of Reaction Bonded Silicon Nitride. Am. Ceram. Soc. Bull. 59 [12], 1216–1222 (1980)Google Scholar
  237. [3.237]
    W.R. Cannon, S.C. Danforth, J.H. Flint, J.S. Haggerty, and R.A. Marra: Sinterable Ceramic Powders from Laser Driven Reactions, Part I: Process Description and Modeling. J. Am. Ceram. Soc. 65 [7], 324–330 (1982)Google Scholar
  238. [3.238]
    W.R. Cannon, S.C. Danforth, J.H. Flint, J.S. Haggerty, and R.A. Marra: Sinterable Ceramic Powders from Laser Driven Reactions, Part II: Powder Characteristics and Process Variables. J. Am. Ceram. Soc. 65 [7], 330–335 (1982)Google Scholar
  239. [3.239]
    S.T. Buljan, J.G. Baldoni, and M.L. Huckabee: Si 3 N 4 -SiC Composites. Am. Ceram. Soc. Bull. 66 [2], 347–352 (1987)Google Scholar
  240. [3.240]
    R. Lundberg, L. Kahlman, R. Pompe, R. Carlsson, and R. Warren: SiC-Whisker-Reinforced Si 3 N 4 Composites, Am. Ceram. Soc. Bull. 66 [2], 330–333 (1987)Google Scholar
  241. [3.241]
    J.S. Haggerty and Y.M. Chiang: Reaction-Based Processing Methods for Ceramics and Composites. Ceram. Eng. Sci. Proc. 11 [7–8], 757–781 (1990)Google Scholar
  242. [3.242]
    J.S. Haggerty: Reaction Sintering. In: Engineered Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1991), pp. 291–296Google Scholar
  243. [3.243]
    A. Pivkina, P.J. van der Put, Y. Frolov, and J. Schoonman: Reaction-Bonded Titanium Nitride Ceramics. J. Eur. Ceram. Soc. 16 [1], 35–32 (1996)Google Scholar
  244. [3.244]
    B. North and K.E. Gilchrist: Effect of Impurity Doping on a Reaction-Bonded Silicon Carbide. Am. Ceram. Soc. Bull. 60 [5], 549–554 (1981)Google Scholar
  245. [3.245]
    G.R. Sawyer and T.F. Page: Microstructural Characterization of “REFEL” (Reaction Bonded) Silicon Carbides. J. Mater. Sci. 13 [4], 885–904(1978)Google Scholar
  246. [3.246]
    P.A. Willermet, R.A. Pett, and T.J. Whalen: Development and Processing of Injection Moldable Reaction Sintered SiC Compositions. Am. Ceram. Soc. Bull. 57 [8], 744–747 (1978)Google Scholar
  247. [3.247]
    R.P. Meissner and Y.M. Chiang: Processing of Reaction-Bonded Silicon Carbide Without Residual Silicon Phase. Ceram. Eng. Sci. Proc. 9 [7–8], 1053–1059(1988)Google Scholar
  248. [3.248]
    Y.M. Chiang, J.S. Haggerty, R.P. Messner, and C. Demetry: Reaction-Based Processing Methods for Ceramic-Matrix Composites. Am. Ceram. Soc. Bull. 68 [2], 420–428 (1989)Google Scholar
  249. [3.249]
    P.D.D. Rodrigo and P. Boch: Preparation of High Purity Mullite Ceramics. In: 13th International Conference on Science of Ceramics. P. Odier, F. Cabannes, and B. Cales (eds.). (Les Editions de Physique Les Unix Cedex France, 1986), pp. C1–411–416Google Scholar
  250. [3.250]
    I.A. Aksay, D.M. Dabbs, and M. Sarikaya: Mullite for Structural, Electronic, and Optical Applications. J. Am. Ceram. Soc. 74 [10], 2343–2358(1991)Google Scholar
  251. [3.251]
    P. Miranzo, M.I. Osendi, and J.S. Moya: Influence of Processing Method on the Microstructure and Mechanical Properties of Mullite/ZrO 2 Composites. In: 13th International Conference on Science of Ceramics. P. Odier, F. Cabannes, and B. Cales (eds.). (Les Editions de Physique Les Unix Cedex France, 1986), pp. C1–417–421Google Scholar
  252. [3.252]
    J. Rincon, G. Thomas, P. Pena, S. de Aza, and J.S. Moya: Reaction Sintered Zirconia-Mullite Composites with CaO. In: 13th International Conference on Science of Ceramics. P. Odier, F. Cabannes, and B. Cales (eds.). (Les Editions de Physique Les Unix Cedex France, 1986), pp. Cl-423–427Google Scholar
  253. [3.253]
    S. Lathabai, D.G. Hay, F. Wagner, and N. Claussen: Reaction-Bonded Mullite/Zirconia Composites. J. Am. Ceram. Soc. 79 [1], 248–256 (1996)Google Scholar
  254. [3.254]
    W.S. Coblenz and D. Lewis III: In Situ Reaction of B 2 O 3 with AlN and/or Si 3 N 4 to form BN-Toughened Composites. J. Am. Ceram. Soc. 71 [12], 1080–85(1988)Google Scholar
  255. [3.255]
    G.J. Zhang and Z.Z. Jin: Reactive Synthesis of AlN/TiB 2 Composite. Ceram. Int. 22 [2], 143–147 (1996)Google Scholar
  256. [3.256]
    W. Stadtbauer, W. Kladnig, and G. Gritzner: Al 2 O 3 -TiB 2 Composite Ceramics. J. Mater. Sci. Lett. 8 [10], 1217–1220 (1989)Google Scholar
  257. [3.257]
    M.D. Sacks, N. Bozkurt, and G. Scheiffele: Fabrication of Mullite and Mullite-Matrix Composites by Transient Viscous Sintering of Composite Powders. J. Am. Ceram. Soc. 74 [10], 2428–2437 (1991)Google Scholar
  258. [3.258]
    A. Leriche, P. Descamps, et F. Cambier. Frittage Reaction et Applications aux Composites a Dispersoldes. In: Ceramiques Composites a Particules, Cas du Frittage-Reaction. F. Thevenot (ed.). (Forceram Editions Septima Paris France, 1992), pp. 9–38Google Scholar
  259. [3.259]
    G.J. Zhang, X.M. Yue, Z.Z. Jin, and J.Y. Dai: In-Situ Synthesized TiB 2 Toughened SiC. J. Eur. Ceram. Soc. 16 [4], 409–412 (1996)Google Scholar
  260. [3.260]
    L.G. Cordone and W.E. Martinsen: Glow-Discharge Apparatus for Rapid Sintering of Al 2 O 3. J. Am. Ceram. Soc. 55 [7], 380 (1972)Google Scholar
  261. [3.261]
    R.A. Dugdale: The Application of the Glow Discharge to Material Processing. J. Mater. Sci. 1 [2], 160–169 (1966)Google Scholar
  262. [3.262]
    D.L. Johnson, W.B. Sanderson, J.M. Knowlton, and E.L. Kemer: Sintering of α-Al 2 O 3 in Gas Plasmas. In: Advances in Ceramics, Vol.10: Structure and Properties of MgO and Al 2 O 3 Ceramics. W.D. Kingery (ed.). (The American Ceramic Society Columbus OH, 1984), pp. 656–65Google Scholar
  263. [3.263]
    E.L. Kemer and D.L. Johnson: Microwave Plasma Sintering of Alumina. Am. Ceram. Soc. Bull. 64 [8], 1132–1136 (1985)Google Scholar
  264. [3.264]
    J.S. Kim and D.L. Johnson: Plasma Sintering of Alumina. Am. Ceram. Soc. Bull. 62 [5], 620–622 (1983)Google Scholar
  265. [3.265]
    G. Thomas, J. Freim, and W. Martinsen: Rapid Sintering of UO 2 in a Glow Discharge. Trans. Am. Nucl. Soc. 17, 177 (1973)Google Scholar
  266. [3.266]
    G. Thomas and J. Freim: Parametric Investigation of the Glow Discharge Technique for Sintering UO 2. Trans. Am. Nucl. Soc. 21, 182–183 (1975)Google Scholar
  267. [3.267]
    P.C. Kong, Y.C. Lau, E. Pfender, K. McHenry, W. Wallenhorst, and B. Koepke: Sintering of Fully Stabilized Zirconia Powders in RF Plasmas. In: Ceramic Transactions, Ceramic Powder Science II. G.L. Messing and H. Hausner (eds.). (The American Ceramic Society Westerville OH, 1988), pp. 939–946Google Scholar
  268. [3.268]
    R.M. Young and R. McPherson: Accelerated Densification in Plasma Sintering Due to Thermal Diffusion. In: 9th International Symposium on Plasma Chemistry, Symposium Proceedings Vol.1. R. D’Agostino (ed.). (International Union of Pure and Applied Chemistry Pugnochiuso Italy, 1989), pp. 19–24Google Scholar
  269. [3.269]
    W.H. Sutton: Microwave Processing of Ceramic Materials. Am. Ceram. Soc. Bull. 68 [2], 376–386 (1989)Google Scholar
  270. [3.270]
    D. Palaith and R. Silberglitt: Microwave Joining of Ceramics. Am. Ceram. Soc. Bull. 68 [9], 1601–1606 (1989)Google Scholar
  271. [3.271]
    H. Fukushima, T. Yamamoto, and M. Matsui: Microwave Heating of Ceramics and its Application to Joining. In: Microwave Processing of Materials. W.H. Sutton, M.H. Brooks, and I.J. Chabinsky (eds.). (Materials Research Society Pittsburgh PA, 1988), pp. 267–272Google Scholar
  272. [3.272]
    S. Vodegel: Microwave Densification of Alumina. Ceram. Forum Int. 73 [1], 44–47 (1996)Google Scholar
  273. [3.273]
    J. McKittrick, B. Tunaboylu, and J. Katz: Microwave and Conventional Sintering of Rapidly Solidified Al 2 O 3 -ZrO 2 Powders. J. Mater. Sci. 29 [8], 2119–2125(1994)Google Scholar
  274. [3.274]
    G. Desgardin, L. Mazo, L. Quemeneur, and B. Raveau: Microwave Sintering of BaTiO 3 Based Ceramics. In: Thirteenth International Conference on Science of Ceramics. P. Odier, F. Cabannes, and B. Cales (eds.). (Les Editions de Physique Cedex France, 1986), pp. C1–397–402Google Scholar
  275. [3.275]
    Y.L. Tian, M.E. Bordin, and D.L. Johnson: Microwave Sintering of Ceramics Under High Gas Pressure. In: Microwave Processing of Materials. W.H. Sutton, M.H. Brooks, and I.J. Chabinsky. (Mater. Res. Soc. Pittsburgh PA, 1988), pp. 213–218Google Scholar
  276. [3.276]
    T.T. Meek, C.E. Holcomb, and N. Dykes: Microwave Sintering of Some Oxide Materials Using Sintering Aids. J. Mater. Sci. Lett. 6 [9], 1060–1062(1987)Google Scholar
  277. [3.277]
    R.D. Blake and T.T. Meek: Microwave Processed Composites. J. Mater. Sci. Lett. 5 [11], 1097–1098 (1986)Google Scholar
  278. [3.278]
    J.D. Katz, R.D. Blake, J.J. Petrovic, and H. Sheinberg: Microwave Sintering of Boron Carbide. In: Microwave Processing of Materials. W.H. Sutton, M.H. Brooks, and I.J. Chabinsky (eds.). (Materials Research Society Pittsburgh PA, 1988), pp. 219–226Google Scholar
  279. [3.279]
    B. Swain: Microwave Sintering of Ceramics. Adv. Mater. Proc. 134 [9], 76–82(1988)Google Scholar
  280. [3.280]
    Y.L. Tian, D.L. Johnson, and M.E. Brodwin: Microwave Sintering of Al 2 O 3 -TiC Composites. In: Ceramic Transaction, Vol.1: Ceramic Powder Science II. G.L. Messing, E.R. Fuller Jr., and H. Hausner (eds.). (The American Ceramic Society Westerville OH, 1988), pp. 933–938Google Scholar
  281. [3.281]
    S.S. Park and T.T. Meek: Characterization of ZrO 2 -Al 2 O 3 Composites Sintered Using 2.45 GHz Radiation. Ceram. Eng. Sci. Proc. 11 [9–10], 1395–1404(1990)Google Scholar
  282. [3.282]
    J.D. Katz, R.D. Blake, and J.J. Petrovic: Microwave Sintering of Alumina-Silicon Carbide Composites at 2.45 and 60 GHz. Ceram. Eng. Sci. Proc. 9 [7–8], 725–734 (1988)Google Scholar
  283. [3.283]
    Z.A. Munir: Synthesis of High Temperature Materials by Self-Propagating Combustion Methods. Am. Ceram. Soc. Bull. 67 [2], 342–349(1988)Google Scholar
  284. [3.284]
    R.W. Rice and W.J. McDonough: Intrinsic Volume Changes of Self-Propagating Synthesis. J. Am. Ceram. Soc. 68 [5], C-122–123 (1985)Google Scholar
  285. [3.285]
    R.W. Rice, W.J. McDonough, G.Y. Richardson, J.M. Kunetz, and T. Schroeder: Hot Rolling of Ceramics Using Self Propagating High Temperature Synthesis. Ceram. Eng. Sci. Proc. 7 [7–8], 751–760 (1986)Google Scholar
  286. [3.286]
    R. Rice: Processing of Ceramic Composites. In: Advanced Ceramic Processing and Technology, Vol.1. J.G.P. Binner (ed.). (Noyes Park Ridge NJ, 1990)Google Scholar
  287. [3.287]
    D.P. Stinton, T.M. Besmann, and R.A. Lowden: Advanced Ceramics by Chemical Vapor Deposition. Am. Ceram. Soc. Bull. 67 [2], 350–355 (1988)Google Scholar
  288. [3.288]
    D.P. Stinton, T.M. Besmann, R.A. Lowden, and B.W. Sheldon: Vapor Deposition. In: Engineering Materials Handbook, Vol.4: Ceramics and Glasses. (ASM International Materials Park OH, 1992), pp. 215–222Google Scholar
  289. [3.289]
    M. Hirayama and K. Shohno: CVD-BN for Boron Diffusion in Si and Its Applications to Si Devices. J. Electrochem. Soc. 122 [12], 1671–1675 (1975)Google Scholar
  290. [3.290]
    W.A. Bryant: Fundamentals of Chemical Vapor Deposition. J. Mater. Sci. 12 [7], 1285–1306(1977)Google Scholar
  291. [3.291]
    N.J. Archer: The Preparation and Properties of Pyrolytic Boron Nitride. In: High Temperature Chemistry in Inorganic and Ceramic Materials. F.P. Glasser and P.E. Potter (eds.). (The Chemical Society London UK, 1977), pp. 167–180Google Scholar
  292. [3.292]
    D.P. Stinton, W.J. Lackey, R.J. Lauf, and T.M. Besmann: Fabrication of Ceramic-Ceramic Composites by Chemical Vapor Deposition. Ceram. Eng. Sci. Proc. 5 [7–8], 668–676 (1984)Google Scholar
  293. [3.293]
    T. Hirai and S. Hayashi: Preparation and Some Properties of Chemically Vapor Deposited Si 3 N 4 -TiN Composite. J. Mater. Sci. 17, 1320–1328 (1982)Google Scholar
  294. [3.294]
    A.J. Caputo and W.J. Lackey: Fabrication of Fiber-Reinforced Ceramic Composites by Chemical Vapor Infiltration. Ceram. Eng. Sci. Proc. 5 [7–8], 654–667(1984)Google Scholar
  295. [3.295]
    A.J. Caputo, D.P. Stinton, R.A. Lowden, and T.M. Besmann: Fiber-Reinforced SiC Composites with Improved Mechanical Properties. Am. Ceram. Soc. Bull. 66 [2], 368–372 (1987)Google Scholar
  296. [3.296]
    J. Hurt and D. Viechnicki: Ultrafine Grain Ceramics from Melt Phase. In: Ultrafine Grain Ceramics. J.J. Burke, N.L. Reed, and V. Weiss (eds.). (Syracuse University Press New York, 1970), pp. 273–295Google Scholar
  297. [3.297]
    D. Viechnicki and F. Schmid: Eutectic Solidification in the System Al 2 O 3 /Y 3 Al 5 O 12. J. Mater. Sci. 4 [1], 84–88 (1969)Google Scholar
  298. [3.298]
    C. Hülse and J. Batt: Effect of Eutectic Microstructures on the Mechanical Properties of Ceramic Oxides. (United Aircraft Final Tech.Rep. UARL-N910803–10, May 1974)Google Scholar
  299. [3.299]
    R.L. Ashbrook: Directionally Solidified Ceramic Eutectics. J. Am. Ceram. Soc. 60 [9–10], 428–435 (1977)Google Scholar
  300. [3.300]
    F. Schmid and D. Viechnicki: Oriented Eutectic Microstructures in the System Al 2 O 3 /ZrO 2. J. Mater. Sci. 5 [6], 470–473 (1970)Google Scholar
  301. [3.301]
    D.J. Rowcliffe, W.J. Warren, A.G. Elliot, and W.S. Rothwell: The Growth of Oriented Ceramic Eutectics. J. Mater. Sci. 4 [10], 902–907 (1969)Google Scholar
  302. [3.302]
    W.J. Minford, R.C. Bradt, and V.S. Stubican. Crystallography and Microstructure of Directionally Solidified Oxide Eutectics. J. Am. Ceram. Soc. 62 [3–4], 154–157 (1979)Google Scholar
  303. [3.303]
    F.L. Kennard, R.C. Bradt, and V.S. Stubican. Eutectic Solidification of MgO-MgAl 2 O 4. J. Am. Ceram. Soc. 56 [11], 566–569 (1973)Google Scholar
  304. [3.304]
    F.L. Kennard, R.C. Bradt, and V.S. Stubican. Directional Solidification of the ZrO 2 -MgO Eutectic. J. Am. Ceram. Soc. 57 [10], 428–431 (1974)Google Scholar
  305. [3.305]
    D.J.S. Cooksey, D. Munson, M.P. Wilkinson, and A. Hellawell. The Freezing of Some Continuous Binary Eutectic Mixtures. Philos. Mag. 10[107], 745–769(1964)Google Scholar
  306. [3.306]
    J.D. Hunt and K.A. Jackson: Binary Eutectic Solidification. Trans AIME 236 [6], 843–852 (1966)Google Scholar
  307. [3.307]
    C.C. Sorrell, H.R. Beratan, R.C. Bradt, and V.S. Stubican: Directional Solidification of (Ti, Zr)Carbide-(Ti, Zr) Diboride Eutectics. J. Am. Ceram. Soc. 67 [3], 190–194 (1984)Google Scholar
  308. [3.308]
    J. DerHong, K.E. Spear, and V.S. Stubican: Directional Solidification of SiC-B 4 C Eutectic: Growth and Some Properties. Mater. Res. Bull. 14 [6], 775–783(1979)Google Scholar
  309. [3.309]
    V.S. Stubican and R.C. Bradt: Eutectic Solidification in Ceramic Systems. Ann. Rev. Mater. Sci. 11, 267–297 (1981)Google Scholar
  310. [3.310]
    W.B. Hillig: Melt Infiltration Process for Making Ceramic Matrix Composites. In: Advanced Ceramic Processing and Technology, Vol.1. J.G.P. Binner (ed.). (Noyes Park Ridge NJ, 1990)Google Scholar
  311. [3.311]
    W.G. Hillig, R.L. Mehan, C.R. Morelock, V.J. DeCarlo, and W. Laskow: Silicon/Silicon Carbide Composites. Am. Ceram. Soc. Bull. 54 [12], 1054–1056(1975)Google Scholar
  312. [3.312]
    R. Riedel and W. Dressier: Chemical Formation of Ceramics. Ceram. Int. 22 [3], 233–239 (1996)Google Scholar
  313. [3.313]
    R. Riedel, M. Seher, J. Mayer, and D.V. Szabo: Polymer-Derived Si-Based Bulk Ceramics, Part I: Preparation, Processing and Properties. J. Eur. Ceram. Soc. 15 [8], 703–715 (1995)Google Scholar
  314. [3.314]
    M.F. Godon, G. Fantozzi, M. Murat, and J.P. Disson: Manufacture of Monolithic Ceramic Bodies from Polysilazane Precursor. J. Eur. Ceram. Soc. 15 [6], 591–597 (1995)Google Scholar
  315. [3.315]
    D.P. Kim, C.G. Cofer, and J. Economy: Fabrication and Properties of Ceramic Composites with a Boron Nitride Matrix. J. Am. Ceram. Soc. 78 [6], 1546–1552 (1995)Google Scholar
  316. [3.316]
    L. Kempfer: Forming the Pieces of the Ceramic Puzzle. Mater. Eng. 107 [6], 23–26 (1990)Google Scholar
  317. [3.317]
    J.D. Currey and A.J. Kohn: Fracture in the Crossed-Lamellar Structure of Conus Shells. J. Mater. Sci. 11 [9], 1615–1623 (1976)Google Scholar
  318. [3.318]
    V.J. Laraia and A.H. Heuer: Microstructures and Mechanical Behavior of Mollusk Shells. In: Proceedings of the 11th Riso International Symposium on Metallurgy and Materials Science. J.J. Bentzen, J.B.B. Sorensen, N. Christiansen, A. Horsewell, and B. Ralph (eds.). (Riso National Laboratory Roskilde Denmark, 1990), pp. 79–96Google Scholar
  319. [3.319]
    S.A. Wainwright, W.D. Biggs, J.D. Currey, and J.M. Gosline: Mechanical Design in Organisms. (Edward Arnold New York, 1976)Google Scholar
  320. [3.320]
    R.E. Newnham and G.R. Ruschau: Smart Electroceramics. J. Am. Ceram. Soc. 74 [3], 463–480 (1991)Google Scholar
  321. [3.321]
    T. Ota, M. Takahashi, T. Hibi, M. Ozawa, S. Suzuki, Y. Hikichi, and H. Suzuki: Biomimetic Process for Producing SiC Wood. J. Am. Ceram. Soc. 78 [12], 3409–3411 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Murat Bengisu
    • 1
  1. 1.Department of Industrial EngineeringEastern MediterraneanFamagusta TRNCTurkey

Personalised recommendations