Production and Properties of Ceramic Powders, Whiskers, Fibers, and Single Crystals

  • Murat Bengisu
Part of the Engineering Materials book series (ENG.MAT.)


Typically, engineering ceramics have a controlled composition and higher purity compared to conventional ceramics. Most of the conventional ceramic products such as sanitary ware, tableware, wall tiles, and brick are made from raw materials found in nature. Raw materials for engineering ceramics, on the other hand, are normally not found in nature; they must be produced artificially.


Rice Husk Ceramic Powder Yttrium Iron Garnet Rice Hull Whisker Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [2.1]
    D.W. Richerson: Modern Ceramic Engineering. (Marcel Dekker New York, 1982)Google Scholar
  2. [2.2]
    L.H. Van Vlack: Physical Ceramics for Engineers, Addison- Wesley Reading MA, 1964)Google Scholar
  3. [2.3]
    J.S. Reed: Introduction to the Principles of Ceramic Processing. (John Wiley&Sons New York, 1988)Google Scholar
  4. [2.4]
    W.E. Rhine and H.K. Bowen: An Overview of Chemical and Physical Routes to Advanced Ceramic Powders. Ceram. Int. 17 [3], 143–52, (1991)CrossRefGoogle Scholar
  5. [2.5]
    Materials Handbook. Ceram. Ind. 136 [1], 102 (1991)Google Scholar
  6. [2.6]
    R. Stevens: Zirconia and Zirconia Ceramics. (Magnesia Elektron Publication # 113, 1986)Google Scholar
  7. [2.7]
    W.E. Lee and W.M. Rainforth: Ceramic Microstructures. (Chapman & Hall London, 1994)Google Scholar
  8. [2.8]
    F.H. Norton: Fine Ceramics. (Krieger Malabar FL, 1978)Google Scholar
  9. [2.9]
    T.B. Shaffer and A. Goel: Silicon Nitride in ART Handbook of Advanced Ceramic Materials. (Advanced Refractory Technologies, March 1993)Google Scholar
  10. [2.10]
    S. Saito (ed): Fine Ceramics. (Elsevier Essex England, 1985), pp. 205–211Google Scholar
  11. [2.11]
    D.W. Johnson Jr.: Innovations in Ceramic Powder Preparation. In: Advances in Ceramics, Vol.21, Ceramic Powder Science. G.L. Messing, K.S. Mazdiyasni, J.W. McCauley, and R.A. Haber (eds.). (The American Ceramic Society Westerville OH, 1984), pp. 3–19Google Scholar
  12. [2.12]
    W.F. Kladnig and J.E. Horn: Submicron Oxide Powder Preparation by Microwave Processing. Ceram. Int. 16 [2], 99–106 (1990)CrossRefGoogle Scholar
  13. [2.13]
    C.L.J. Adkins: Powder Preparation by Gas-Phase Techniques. In: Characterization of Ceramics. R.E. Loehman (ed.). (Butterworth-Heinemann Stoneham MA, 1993)Google Scholar
  14. [2.14]
    G.H. Maher, C.E. Hutchins, and S.D. Ross: Preparation and Characterization of Ceramic Fine Powders Produced by the Emulsion Process. Am. Ceram. Soc. Bull. 72 [5], 72–76 (1993)Google Scholar
  15. [2.15]
    D.L. Segal: Advanced Methods for the Production of Ceramic Powders. Ceram. Acta 4 [5–6], 15–30 (1992)Google Scholar
  16. [2.16]
    W.J. Dawson: Hydrothermal Synthesis of Advanced Ceramic Powders. Am. Ceram. Soc. Bull. 67 [10], 1673–1678 (1988)Google Scholar
  17. [2.17]
    S. Komarneni, E. Fregeau, E. Breval, and R. Roy: Hydrothermal Preparation of Ultrafine Ferrites and Their Sintering. J. Am. Ceram. Soc. 71 [1], C-26–28(1988)Google Scholar
  18. [2.18]
    L.L. Hench and J.K. West: The Sol-Gel Process. Chem. Rev. 90 [1], 33–72(1990)CrossRefGoogle Scholar
  19. [2.19]
    E. Matijevich: Monodispersed Metal (Hydrous) Oxides: A Fascinating Field of Colloidal Science. Acc. Chem. Res. 14 [1], 22–29 (1981)CrossRefGoogle Scholar
  20. [2.20]
    E.A. Barringer and H.K. Bowen: Formation, Packing, and Sintering of Monodisperse Ti0 2 Powders. J. Am. Ceram. Soc. 65 [12], C199–201 (1982)Google Scholar
  21. [2.21]
    P. Colomban: Gel Technology in Ceramics, Glass—Ceramics, and Ceramic-Ceramic Composites. Ceram. Int. 15 [1], 23–50 (1989)CrossRefGoogle Scholar
  22. [2.22]
    J. Livage, M. Henry, J.P. Jolivet, and C. Sanchez: Chemical Synthesis of Fine Powders. MRS Bull. 15 [1], 18–25 (1990)Google Scholar
  23. [2.23]
    J. A. Switzer: Electrochemical Synthesis of Ceramic Films and Powders. Am. Ceram. Soc. Bull. 66 [10], 1521–1524 (1987)Google Scholar
  24. [2.24]
    Y. Zhou, R.J. Phillips, and J.A. Switzer: Electrochemical Synthesis and Sintering of Nanocrystalline Cerium(IV) Oxide Powders. J. Am. Ceram. Soc. 78 [4], 981–985 (1995)CrossRefGoogle Scholar
  25. [2.25]
    I. Zhitomirsky, L. Galor, A. Kohn, and H.W. Hennicke: Electro deposition of Ceramic Films from Non-Aqeous and Mixed Solutions. J. Mater. Sci. 30 [20], 5307–5312 (1995)CrossRefGoogle Scholar
  26. [2.26]
    A. Kumar and R. Roy: Reactive-Electrode Submerged-Arc Process for Producing Fine Non-Oxide Powders. J. Am. Ceram. Soc. 72 [2], 354–356(1989)CrossRefGoogle Scholar
  27. [2.27]
    T. Onu, P.W. Brown, J. Adair, and P. Ravindranathan: Synthesis of Ultra-Fine AIN Powders by the Reactive Electrode Submerged-Arc Method (RESA) — abstract. (University of Florida, Adair Group Website, abstract/job41.txt)Google Scholar
  28. [2.28]
    K.S. Mazdiyasni, C.T. Lynch, and J.S. Smith II: J. Am. Ceram. Soc. 48 [7], 372–375(1965)CrossRefGoogle Scholar
  29. [2.29]
    S.K. Varshney and C.L. Beatty: Formation of Silicon Nitride and Silicon Carbide by Vapor-Phase Reaction. Ceram. Sci. Eng. Proc. 3 [9–10], 555–564(1982)CrossRefGoogle Scholar
  30. [2.30]
    C.J. Brinker and G.W. Scherer: Sol-Gel Science. (Academic Press San Diego CA, 1990)Google Scholar
  31. [2.31]
    L.M. Sheppard: Vapor-Phase Synthesis of Ceramics. Adv. Mater. Proc. 131 [4], 53–58 (1987)Google Scholar
  32. [2.32]
    D.S. Phillips and G.J. Vogt: Plasma Synthesis of Ceramic Powders. MRS Bull. 12 [7], 54–57 (1987)Google Scholar
  33. [2.33]
    C.A. Pickles, J.M. Toguri, and C.J. Simpson: Plasma Arc Production of Silicon Carbide Crystals. Br. Ceram. Trans. 94 [3], 89–96 (1994)Google Scholar
  34. [2.34]
    R.W. Chorley and P.W. Lednor: Synthetic Routes to High Surface Area Non-Oxide Materials. Adv. Mater. 3 [10], 474–485 (1991)CrossRefGoogle Scholar
  35. [2.35]
    J.S. Haggerty: In: Ultrastructure Processing of Ceramics, Glasses, and Composites. L.L. Hench and D.R. Ulrich (eds.). (John Wiley&Sons New York, 1984), pp. 353–366Google Scholar
  36. [2.36]
    M.I. Baraton, L. Boulanger, M. Cauchetier, V. Lorenzelli, M. Luce, T. Merle, P. Quintard, and Y.H. Zhou, Nanometric Boron Nitride Powders: Laser Synthesis, Characterization, and FT-IR Surface Study. J. Eur. Ceram. Soc. 13 [4], 371–378 (1994)CrossRefGoogle Scholar
  37. [2.37]
    R. Pampuch, L. Stobierski, and J. Lis: Synthesis of Sinterable β-SiC Powders by a Solid Combustion Method. J. Am. Ceram. Soc. 72 [8], 1434–1435 (1989)CrossRefGoogle Scholar
  38. [2.38]
    O. Yamada, Y. Miyamoto, M. Koizumi: Self Propagating High Temperature Synthesis (SHS) of SiC Powders and the Properties of the Sintered Compact. J. Jpn. Soc. Powder Metall. 33 [6], 286–290 (1986)CrossRefGoogle Scholar
  39. [2.39]
    J.J. Kingsley and K.C. Patil. A Novel Combustion Process for the Synthesis of Fine Particle a-Alumina and Related Oxide Materials. Mater. Lett. 6 [11, 12], 427–432 (1988)CrossRefGoogle Scholar
  40. [2.40]
    A.G. Merzhanov: Review-History and Recent Developments in SHS. Ceram. Intern. 21 [5], 371–379 (1995)CrossRefGoogle Scholar
  41. [2.41]
    R.S. DeCarli and J.C. Jamieson: Science 133, 1821 (1961)Google Scholar
  42. [2.42]
    R. Liepins, K.P. Staudhammer, K.A. Johnson, and M. Thomson: Shock-Induced Synthesis, I. Cubic Boron Nitride From Ammonia Borane, Mater. Lett. 7 [1, 2], 44–46 (1988)CrossRefGoogle Scholar
  43. [2.43]
    G. LeCaer, P. Matteazzi, E. Bauer Grosse, A. Pianelli, and E. Bouzy: Mechanically Driven Syntheses of Carbides and Suicides, J. Mater. Sci. 25 [11], 4726–4731 (1990)Google Scholar
  44. [2.44]
    P. Matteazzi and G. LeCaer: Room-Temperature Mechanosynthesis of Carbides by Grinding of Elemental Powders. J. Am. Ceram. Soc. 74 [6], 1382–1390(1991)CrossRefGoogle Scholar
  45. [2.45]
    P.E.D. Morgan: Structuring Chemical Technology to Produce Cost-Effective Ceramic Products on the Large Scale. Am. Ceram. Soc. Bull. 72 [7], 65–70 (1993)Google Scholar
  46. [2.46]
    A.W. Weimer, G.A. Cochran, G.E. Eisman, J.P. Henley, B.D. Hook, L.K. Mills, T.A. Guiton, A.K. Knudsen, N.R. Nicholas, J.E. Volmering, and W.G. Moore: Rapid Process for Manufacturing Aluminum Nitride Powder. J. Am. Ceram. Soc. 77 [1], 3–18 (1994)CrossRefGoogle Scholar
  47. [2.47]
    P. Bracke, H. Shurmans, and J. Verhoest: Inorganic Fibers and Composite Materials. (Pergamon Press Oxford England, 1984)Google Scholar
  48. [2.48]
    A. Levitt (ed.): Whisker Technology. (John Wiley &; Sons New York, 1970)Google Scholar
  49. [2.49]
    H. Wada and M.J. Wang: Ceramic Whisker Synthesis and Phase Stability in the Si-C-N-O System. In: Whisker and Fiber Toughened Ceramics. R.A. Bradley, D.E. Clark, D.C. Larsen, and J.O. Stiegler (eds.). (The American Society for Metals Metals Park OH, 1989), pp. 63–72Google Scholar
  50. [2.50]
    S. Hashimoto and A. Yamaguchi: Synthesis of MgAl 2 O 4 Whiskers by an Oxidation-Reduction Reaction. J. Am. Ceram. Soc. 79 [2], 491–494 (1996)CrossRefGoogle Scholar
  51. [2.51]
    M. Futamoto, I. Yuito, and U. Kawabe: Hafnium Carbide and Nitride Whisker Growth by Chemical Vapor Deposition. J. Cryst. Growth 61 [1], 69–74(1983)CrossRefGoogle Scholar
  52. [2.52]
    W.J. Lackey, J.A. Hanigofsky, and G.B. Freeman: Experimental Whisker Growth and Thermodynamic Study of the Hafnium-Carbon System for Chemical Vapor Deposition Applications. J. Am. Ceram. Soc. 73 [6], 1593–1598(1990)CrossRefGoogle Scholar
  53. [2.53]
    G. Gorny and R. Pampuch: Growth of SiC Whiskers and Platelets from the Gas Phase. In: Euro Ceramics, Vol.1, Processing of Ceramics. G. De With, R.A. Terpstra, and R. Metselaar (eds.). (Elsevier Essex England, 1989), pp. 1.18–1.22Google Scholar
  54. [2.54]
    J.W. Milewski: Growth ofβ-SiC Whiskers by the VLS Process. J. Mater. Sci., 20 [4], 1160–1166(1985)CrossRefGoogle Scholar
  55. [2.55]
    P.D. Shalek, D.S. Phillips, D.E. Christiansen, J.D. Katz, W.J. Parkinson, and J.J. Petrovic: Synthesis and Characterization of VLS-Derived Silicon Carbide Whiskers. In: Whisker and Fiber Toughened Ceramics. R.A. Bradley, D.E. Clark, D.C. Larsen, and J.O. Stiegler (eds.). (The American Society for Metals Metals Park OH, 1989), pp. 53–62Google Scholar
  56. [2.56]
    J.V. Milevski, F.D. Gac, J.J. Petrovic, and S.R. Skaggs: Growth of Beta-Silicon Carbide Whiskers by VLS Process. J. Mater. Sci. 20 [4], 1160–1166(1985)CrossRefGoogle Scholar
  57. [2.57]
    T.F. Cooke: Inorganic Fibers — A Literature Review. J. Am. Ceram. Soc. 74 [12], 2959–2978 (1991)CrossRefGoogle Scholar
  58. [2.58]
    J.G. Lee and I.B. Cutler: Formation of SiC from Rice Hulls. J. Am. Ceram. Soc. 54 [2], 195 (1975)Google Scholar
  59. [2.59]
    A.K. Ray, G. Mahanty, and A. Ghose: Effect of Catalysts and Temperature on Silicon Carbide Whiskers Formation from Rice Husks. J. Mater. Sci. Lett. 10 [4], 227–229 (1991)CrossRefGoogle Scholar
  60. [2.60]
    R.V. Krishnarao, M.M. Godhinki, P.G.I. Mukunda, and M. Chakraborty: Direct Pyrolysis of Raw Rice Husks for Maximization of Silicon Carbide Whisker Formation. J. Am. Ceram. Soc. 74 [11], 2869–2875 (1991)CrossRefGoogle Scholar
  61. [2.61]
    A.P. Divecha, S.G. Fishman, and S.D. Karmarkar: Silicon Carbide Reinforced Aluminum-A Formable Composite. J. Metals 33 [9], 12–17 (1981)Google Scholar
  62. [2.62]
    K.C. Patil, S.S. Manoharan, and D. Gajapathy: Preparation of High-Density Ferrites. In: Handbook of Ceramics and Composites, Vol A, Synthesis and Properties. (Marcel Dekker New York, 1990)Google Scholar
  63. [2.63]
    C.E. Bamberger, D.W. Coffey, and T.A. Nolan: Formation of TiN Whiskers from Oxide Containing Cyanide Melts. J. Mater. Sci. 25 [12], 4992–4996(1990)CrossRefGoogle Scholar
  64. [2.64]
    M. Yoshimura, T. Hiuga, and S. Somiya: Dissolution and Reaction of Yttria-Stabilized Zirconia Single Crystals in Hydrothermal Solutions. J. Am. Ceram. Soc. 69 [7], 583–584 (1986)CrossRefGoogle Scholar
  65. [2.65]
    M. Yoshimura, H. Suda, K. Okamoto, and K. Ioku. Hydrothermal Synthesis of Biocompatible Whiskers. J. Mater. Sci. 29 [13], 3399–3402 (1994)CrossRefGoogle Scholar
  66. [2.66]
    B.D. Cullity: Elements of X-Ray Diffraction. (Addison-Wesley Reading MA, 1978)Google Scholar
  67. [2.67]
    R.W. Cahn and P. Haasen (eds): Physical Metallurgy. (North Holland Amsterdam, 1983)Google Scholar
  68. [2.68]
    E. Jesnitzer: Verformung Metallischer Werkstoffe. Ph.D.Thesis. (Institut fur Werkstoffkunde der Technichen Universitat Hannover Germany)Google Scholar
  69. [2.69]
    E.A. Weaver, H.D. Merchant, and R.P. Poplawsky: Growth of Fe-Ni Oxide Spinel Single Crystals by the Arc Image Technique. J. Am. Ceram. Soc. 52 [4], 214–215 (1969)CrossRefGoogle Scholar
  70. [2.70]
    F. Schmid, C.P. Khattak, and D.M. Felt: Producing Large Sapphire for Optical Applications. Am. Ceram. Soc. Bull. 73 [2], 39–44 (1994)Google Scholar
  71. [2.71]
    K.K. Chawla: Composite Materials. (Springer-Verlag New York, 1987)Google Scholar
  72. [2.72]
    J.I. Duffy (ed): Glass Technology. (Noyes Park Ridge NJ, 1981)Google Scholar
  73. [2.73]
    J.O. Carlsson: Review-Techniques for the Preparation of Boron Fibers. J. Mater. Sci. 14 [2], 255–264 (1979)CrossRefGoogle Scholar
  74. [2.74]
    J. Delmonte: Technology of Carbon and Graphite Fiber Composites. (Van Nostrand Reinhold New York, 1981)Google Scholar
  75. [2.75]
    G. Savage: Carbon-Carbon Composites. (Chapman & Hall London, 1993)CrossRefGoogle Scholar
  76. [2.76]
    S. Yajima, Y. Hasegawa, J. Hayashi, and M. Imura: Synthesis of Continuous Silicon Carbide Fibre with High Tensile Strength and High Young’s Modulus. J. Mater. Sci. 13 [12], 2569–2576 (1978)CrossRefGoogle Scholar
  77. [2.77]
    L.C. Sawyer, M. Jamieson, D. Brikowski, M.I. Haider, and R.T. Chen. Strength, Structure, and Fracture Properties of Ceramic Fibers Produced from Polymeric Precursors: I, Base Line Studies. J. Am. Ceram. Soc. 70 [11], 798–810 (1987)CrossRefGoogle Scholar
  78. [2.78]
    A.R. Bunsell: Ceramic Fibers for Reinforcement. In: Ceramic-Matrix Composites. R. Warren (ed.). (Blackie and Son London, 1992)Google Scholar
  79. [2.79]
    N.R. Langley, G.E. LeGrow, and J. Lipowitz: Properties of Ceramic Fibers from Organosilicon Polymers. In: Fiber Reinforced Ceramic Composites. (Noyes Park Ridge NJ, 1990), pp. 63–92Google Scholar
  80. [2.80]
    J.C. Romine: New High Temperature Ceramic Fiber. Ceram. Eng. Sci. Proc. 8, 755–765(1987)CrossRefGoogle Scholar
  81. [2.81]
    H.G. Sowman and D.D. Johnson: Oxide Fibers from Chemical Processes. In: Fiber Reinforced Ceramic Composites. K.S. Mazdiyasni (ed.). (Noyes Park Ridge NJ, 1990), pp. 122–140Google Scholar
  82. [2.82]
    D. Sporn: Technology for the Development of Polycrystalline Oxidic Functional Fibers. Ceram. Forum Intern. 71 [9], 547–549 (1994)Google Scholar
  83. [2.83]
    J.S. Haggerty, K.C. Wills, and J.E. Sheehan: Growth and Properties of Single Crystal Oxide Fibers. Ceram. Eng. Sci. Proc. 12 [9–10], 1785–1801 (1991)Google Scholar
  84. [2.84]
    Y.M. Sung, S.A. Dunn, and J.A. Koutsky: Inviscid Melt Spinning (IMS) and Phase Identification of CaO-Al 2 O 3 -MgO Fibers. Ceram. Inter. 20 [5], 337–341 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Murat Bengisu
    • 1
  1. 1.Department of Industrial EngineeringEastern MediterraneanFamagusta TRNCTurkey

Personalised recommendations