Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 523 Accesses

Abstract

In the ground state (at absolute zero temperature), atoms are bound together with a certain amount of cohesive energy. If electrical, magnetic, optical, or mechanical perturbations, or heat is introduced, the system will be forced out of the ground state and brought into a state of higher energy. In this chapter we discuss how the thermal energy of Fe increases with increasing temperature and how, at the same time, the binding energy decreases, by examining the nature and the energetics of the excitations that occur during heating. This analysis provides as a basis for the understanding of the stability of the various crystallographic states of Fe and for the understanding of the physical properties in each of these states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. S. Toloukian, E. H. Buyco, Thermophysical Properties of Matter (IFI/Plenum, New York, 1970) Vol. 4

    Google Scholar 

  2. D. C. Wallace, P. H. Sidles, G. C. Danielson, J. Appl. Phys. 31, (1960) 168

    Article  CAS  Google Scholar 

  3. M. Braun, K. Kohlhaas, Phys. Stat. Sol. 12, (1965) 429

    Article  CAS  Google Scholar 

  4. W. Bendick, W. Pepperhoff, Acta Met. 30, (1982) 679

    Article  CAS  Google Scholar 

  5. C. Kittel, Introduction to Solid State Physics, (Wiley, New York, 1986)

    Google Scholar 

  6. M. Dixon, F. E. Hoare, T. M. Holden, D. E. Moody, Proc. Roy. Soc. London A285, (1965) 561

    Google Scholar 

  7. W. L. McMillan, Phys. Rev. 167, (1968) 331

    Article  CAS  Google Scholar 

  8. G. Grimvall, Phys. kond. Mat. 9, (1969) 283

    CAS  Google Scholar 

  9. W. Bendick, H. H. Ettwig, W. Pepperhoff, J. Phys. F 8, (1978) 2525

    Article  CAS  Google Scholar 

  10. W. Bendick, W. Pepperhoff, J. Phys. F 11, (1981) 57

    Article  CAS  Google Scholar 

  11. R. J. Weiss, Proc. Roy. Soc. 82, (1963) 281

    Article  Google Scholar 

  12. L. Kaufman, E. V. Clougherty, R. J. Weiss, Acta Met. 11, (1963) 323

    Article  CAS  Google Scholar 

  13. M. Acet, H. Zähres, E. F. Wassermann, W. Pepperhoff, Phys. Rev. B 49, (1994) 6012

    Article  CAS  Google Scholar 

  14. P. D. Anderson, R. Hultgren, Trans. AIME 224, (1962) 842

    CAS  Google Scholar 

  15. W. A. Dench, O. Kubaschewski, J. Iron Steel Inst. 201, (1963) 140

    CAS  Google Scholar 

  16. A. Ferrier, M. Olette, Compt. Rend. 254, (1962) 2322

    CAS  Google Scholar 

  17. O. Vollmer, R. Kohlhaas, M. Braun, Z. Naturforsch. 21, (1966) 181

    CAS  Google Scholar 

  18. J. P. Morris, E. F. Foerster, C. W. Schultz, G. R. Zellars, U. S. Bur. Mines, Rep. Nr. 6723 (1960)

    Google Scholar 

  19. J. P. Morris, G. R. Zellars, S. L. Payne, R. L. Kipp, U. S. Bur. Mines, Rep. Nr. 5364 (1957)

    Google Scholar 

  20. K. M. Myles, A. T. Aldred, J. Phys. Chem 68, (1964) 64

    Article  CAS  Google Scholar 

  21. Y. S. Toloukian, R. K. Kirby, R. E. Taylor, P. D. Desai, Thermophysical Properties of Matter (IFI/Plenum, New York, 1977) Vol. 12

    Google Scholar 

  22. F. Richter, Z. angew. Phys. 6, (1979) 367

    Google Scholar 

  23. Y. Tanji, J. Phys. Soc. Japan 31, (1971) 1366

    Article  CAS  Google Scholar 

  24. B. Gehrmann, M. Acet, H. C. Herper, E. F. Wassermann, W. Pepperhoff, physica status solidi (b) 214, (1999) 175

    Article  CAS  Google Scholar 

  25. W. Bendick, H. -H. Ettwig, F. Richter, W. Pepperhoff, Z. Metallkde. 68, (1977) 103

    CAS  Google Scholar 

  26. H. L. Skriver, Phys. Rev B 31, (1985) 1909

    Article  CAS  Google Scholar 

  27. H. C. Herper, E. Hoffmann, P. Entel, Phys. Rev. B 60, (1999) 3839

    Article  CAS  Google Scholar 

  28. L. Kaufmann, H. Bernstein, Computer Calculations ofPhase Diagrams (Academic Press, New York, 1970) S 18 ff

    Google Scholar 

  29. E. F. Wassermann, M. Acet, P. Entel, W. Pepperhoff, J. Magn. Soc. Japan 23, (1999) 385

    Article  CAS  Google Scholar 

  30. L. D. Blackburn, Kaufman, L., M. Cohen, Acta Met. 13, (1965) 533

    Article  CAS  Google Scholar 

  31. G. L. Stepakoff, Kaufmann L., Acta Met. 16, (1968) 13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pepperhoff, W., Acet, M. (2001). Thermal properties. In: Constitution and Magnetism of Iron and its Alloys. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04345-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04345-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07630-5

  • Online ISBN: 978-3-662-04345-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics