Advertisement

Real-Time Solutions for Perturbed Optimal Control Problems by a Mixed Open- and Closed-Loop Strategy

  • Christof Büskens
Chapter

Abstract

Many dynamical processes arising in engineering and natural science can be math ematically modelled by systems of differential equations. Often control functions, by which the process can be influenced, are to be chosen such that a certain objective function is op timized under observation of the differential equations and additional constraints. Today one of the greatest demands on such optimal control problems is to solve them in real-time.

Open-loop strategies have their advantage with respect to optimality whereas the approx imated solutions may not be admissible. Closed-loop strategies guarantee admissibility, but may lead to approximate solutions which are worse in view of optimality. Hence a new mixed strategy is proposed which benefits from the advantages of both methods, without suffering from their disadvantages. Finally an illustrative example from flight mechanics is discussed which shows the efficiency and robustness of the proposed method.

Keywords

Optimal Control Problem Mixed Strategy Convergence Behaviour Active Constraint Flight Path Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Büskens: Direkte Optimierungsmethoden zur numerischen Berechnung optimaler Steuerungen. Diploma thesis, Institut für Numerische Mathematik, Universität Münster, Münster, Germany (1993)Google Scholar
  2. 2.
    C. Büskens: Optimierungsmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuer- und Zustands- Beschränkungen. Dissertation, Institut für Numerische Mathe matik, Universität Münster, Münster, Germany (1998)Google Scholar
  3. 3.
    C. Büskens and H. Maurer, Sensitivity Analysis and Real-Time Optimization of Paramet ric Nonlinear Programming Problems. This volume.Google Scholar
  4. 4.
    C. Büskens and H. Maurer, Sensitivity Analysis and Real-Time Control of Optimal Con trol Problems Using Nonlinear Programming Methods. This volume.Google Scholar
  5. 5.
    M. Mayrhofer and G. Sachs, Notflugbahnen eines zweistufigen Hyperschall-Flugsystems ausgehend vom Trennmanöver. Seminar des Sonderforschungsbereichs 255: Transatmo sphärische Flugsysteme, Technische Universität München, (1996) 109–118Google Scholar
  6. 6.
    M. Mayrhofer and G. Sachs, Abort Trajectory Range Increase by Optimal Fuel Draining, in Optimalsteuerungsprobleme in der Luft- und Raumfahrt, Sonderforschungsbereichs 255: Transatmosphärische Flugsysteme, Technische Universität München (2000) 115—124Google Scholar
  7. 7.
    J. Stoer, Einführung in die Numerische Mathematik I Springer-Verlag, Berlin Heidelberg, (1983) Transatmosphärische Flugsysteme, Technische Universität München (2000) 115—124zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Christof Büskens
    • 1
  1. 1.Lehrstuhl für IngenieurmathematikUniversität BayreuthGermany

Personalised recommendations