Skip to main content

Genetic Defects Related to Metals Other Than Copper

  • Chapter
  • 322 Accesses

Abstract

magnesium, selenium and zinc. The clinical symptoms of primary hypomagnesemia develop within the first months of life. Different neurological signs, such as irritability, jitteriness evolving into tetany and carpo- pedal spasm, were reported. Opisthotonus, general- ized convulsions or raised intracranial pressure may develop. The disease is caused by impaired absorption of magnesium. Treatment with high-dose magnesium supplementation is very effective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paunier L, Radde IC, Kooh SW, Fraser D (1965) Primary hypomagnesemia with secondary hypocalcemia. J Pediatr 67: 945

    Google Scholar 

  2. Lombeck I, Ritzl F, Schnippering HG, Michael H, Bremer HJ, Feinendegen LE, Kosenow W (1975) Primary hypomagnesemia. I. Absorption Studies. Z Kinderheilkd 118: 249–258

    Google Scholar 

  3. Stromme JH, Nesbakken R, Normann T, Skjorten F, Skyberg D, Johannessen B (1969) Familial hypomagnesemia. Bio-chemical, histological and hereditary aspects. Acta Paediatr Scand 58433–444

    Google Scholar 

  4. Evans RA, Carter JN, George CR, Walls RS, Newland RC, McDonnell GD, Lawrence JR (1981) The congenital “magnesium-losing kidney”. Report of two patients. Q J Med New Ser L 50: 39–52

    Google Scholar 

  5. Hedemann L, Strunge P, Munck V (1986) The familial magnesium-losing kidney. Acta Med Scand 219: 133–136

    Article  PubMed  CAS  Google Scholar 

  6. Manz F, Scharer K, Janka P, Lombeck I (1978) Renal magnesium wasting, incomplete tubular acidosis, hypercalciuria and nephrocalcinosis in siblings. Eur J Pediatr 128: 67–79

    Article  PubMed  CAS  Google Scholar 

  7. Praga M, Vara J, Gonzalez Parra E, Andres A, Alamo C, Araque A, Ortiz A, Rodicio JL (1995) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int 47:1419-1425

    Google Scholar 

  8. Bettinelli A, Bianchetti MG, Borella P, Volpini E, Metta MG, Basilico E, Selicorni A, Bargellini A, Grassi MR (1995) Genetic heterogeneity in tubular hypomagnesemia-hypokalemia with hypocalcuria (Gitelman’s syndrome). Kidney Int 47:547-551

    Google Scholar 

  9. Mehrotra R, Nolph KD, Kathuria P, Dotson L (1997) Hypokalemic metabolic alkalosis with hypomagnesuric hypermagnesemia and severe hypocalciuria: a new syndrome? Am J Kidney Dis 29: 106–114

    Article  PubMed  CAS  Google Scholar 

  10. Geven WB, Monnens LA, Willems HL, Buijs WC, ter Haar BG (1987) Renal magnesium wasting in two families with autosomal dominant inheritance. Kidney Int 31: 1140–1144

    Article  PubMed  CAS  Google Scholar 

  11. Behne D, Kyriakopoulos A, Meinhold H, Kohrle J (199o) Identification of type I iodothyronine 5’-deiodinase as a selenoenzyme. Biochem Biophys Res Commun 173: 1143–1149

    Google Scholar 

  12. Croteau W, Davey JC, Galton VA, St Germain DL (1996) Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J Clin Invest 98: 405–417

    Google Scholar 

  13. Salvatore D, Low SC, Berry MJ, Maia AL, Harney JW, Croteau W, St. Germain DL, Larsen PR (1995) Type III 5’-idothyronine deiodinase. Cloning, in vitro expression, and functional analysis of the placental selenoenzyme. J Clin Invest 96: 2421–2430

    Google Scholar 

  14. Kleinhaus N, Faber J, Kahana L, Schneer J, Scheinfeld M (1988) Euthyroid hyperthyroxinemia due to a generalized 5’-deiodinase defect. J Clin Endocrinol Metab 66: 684–688

    Article  PubMed  CAS  Google Scholar 

  15. Necheles TF, Steinberg MH, Cameron D (1970) Erythrocyte glutathione-peroxidase deficiency. Br J Haematol 19: 605–612

    Article  PubMed  CAS  Google Scholar 

  16. Karpatkin S, Weiss HJ (1972) Deficiency of glutathione 24. peroxidase associated with high levels of reduced glutathione in Glanzmann’s thrombasthenia. N Engl J Med 287: 1062–1066

    Article  PubMed  CAS  Google Scholar 

  17. Chen X, Guangqui Y, Chen J, Chen Y, Wen Z, Ge K (1980) 25. Studies on the relations of selenium and Keshan disease. Biol Trace Elem Res 2: 91–107 26.

    Google Scholar 

  18. Mo D (1984) Pathology and selenium deficiency in KashinBeck disease. 3rd international symposium on selenium and biology in medicine, 28 May 1984, Beijing 27.

    Google Scholar 

  19. Lombeck I, Kasperek K, Harbisch HD, Becker K, Schumann E, Schroter W (1978) The selenium state of children. II. Selenium content of serum, whole blood. Eur J Pediatr 128: 213–223

    Google Scholar 

  20. Danboldt M, Coss K (1942) Acrodermatits enteropathica. Acta Derm Venerol (Stockh) 23: 127–169 28.

    Google Scholar 

  21. Sampson B, Kovar IZ, Rauscher A, Fairweather Tait S, Beattie J, McArdle HJ, Ahmed R, Green C (1997) A case of hyperzincemia with functional zinc depletion: a new disor- 29. der? Pediatr Res 42: 219–225

    Article  PubMed  CAS  Google Scholar 

  22. Smith JC, Zeller JA, Brown ED, Ong SC (1976) Elevated plasma zinc: a heritable anomaly. Science 193:496–498 30.

    Google Scholar 

  23. Hambidge KM, Neldner KH, Walravens PA (1975) Letter: zinc, acrodermatitis enteropathica, and congenital malfor- 31. mations. Lancet 1:577–578

    Google Scholar 

  24. Krieger I, Evans GW, Zelkowitz PS (1982) Zinc dependency as a cause of chronic diarrhea in variant acrodermatitis. Pediatrics 69: 773–777

    PubMed  CAS  Google Scholar 

  25. Moynahan EJ, Barnes PM (1973) Zinc deficiency and a synthetic diet for lactose intolerance. Lancet 1: 676–677

    Article  PubMed  CAS  Google Scholar 

  26. Lombeck I, Schnippering HG, Ritzl F, Feinendegen LE, Bremer HJ (1975) Absorption of zinc in acrodermatitis enteropathica (letter). Lancet 1 (7911): 855

    Article  PubMed  CAS  Google Scholar 

  27. van den Hamer DJH, Cornelisse C, Hoogenraad TU, van Wouwe JP (1985) Use of 69mZn loading test for monitoring of zinc malabsorption. In: Mills CF, Bremner I, Chester JK (eds) Trace elements in man and animals-TEMA 5. Commonwealth Agricultural Bureaux, Slough UK, pp 689–691

    Google Scholar 

  28. Atherton DJ, Muller DP, Aggett PJ, Harries JT (1979) A defect in zinc uptake by jejunal biopsies in acrodermatitis. Clin Sci 56: 505–507

    PubMed  CAS  Google Scholar 

  29. Vazquez F, Grider A (1995) The effect of the acrodermatitis enteropathica mutation on zinc uptake in. Biol Trace Elem Res 50: 109–117

    Google Scholar 

  30. Jochum F (1998) Spurenelemente in der Immunologie. Labormedizin 2 /98: 14

    Google Scholar 

  31. Neldner KH, Hambidge KM (1975) Zinc therapy of acrodermatitis enteropathica. N Engl J Med 292: 879–882

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jochum, F., Lombeck, I. (2000). Genetic Defects Related to Metals Other Than Copper. In: Fernandes, J., Saudubray, JM., Van den Berghe, G. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04285-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04285-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04287-8

  • Online ISBN: 978-3-662-04285-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics