Skip to main content

The Indian Hedgehog — PTHrP System in Bone Development

  • Conference paper
Of Fish, Fly, Worm, and Man

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 29))

Abstract

During embryonic development the bones of the vertebrate skeleton develop by two different mechanisms. Most of the bones of the skull are formed by intramembranous ossification in which mesenchymal cells directly differentiate into osteoblasts. The second mechanism, called endochondral ossification, is used to form the bones of the axial and appendicular skeleton as well as some of the facial bones. Endochondral ossification (Erlebacher et al. 1995; Hinchcliffe and Johnson 1980) starts with mesenchymal cells that aggregate and differentiate into chondrocytes, thus forming cartilage elements which serve as templates for the later bones. Cells in the middle of these cartilage elements start to differentiate into hypertrophic chondrocytes, a step that is necessary for the invasion of blood vessels and the subsequent replacement of cartilage by bone. The chondrocytes in the cartilage elements are surrounded by a thin layer of flattened cells, the perichondrium. In parallel with the differentiation of hypertrophic chondrocytes, the perichondrium flanking the differentiating and hypertrophic chondrocytes differentiates into an osteoblast-containing periosteum, which secretes a layer of primary bone, the bone collar. Signals from the perichondrium/periosteum are thought to interact with signals from the cartilage itself in correlating hypertrophic differentiation with the differentiation of the perichondrium into a periosteum. To understand the process of endochondral ossification it is necessary to identify the specific signals regulating the different steps in this process and to analyze their interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC (1994) Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol 126: 1611–1623

    Article  PubMed  CAS  Google Scholar 

  • Bitgood MJ, McMahon AP (1995) Hedgehog and Bmp genes are coexpressed at many diverse sites of cell—cell interaction in the mouse embryo. Dev Biol 172: 126–138

    Article  PubMed  CAS  Google Scholar 

  • Bolander ME (1992) Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med 200: 165–170

    PubMed  CAS  Google Scholar 

  • Capdevila J, Johnson RL (1998) Endogenous and ectopic expression of noggin suggests a conserved mechanism for regulation of BMP function during limb and somite patterning. Dev Biol 197: 205–217

    Article  PubMed  CAS  Google Scholar 

  • Chung UI, Lanske B, Lee K, Li E, Kronenberg H (1998) The parathyroid hormone/parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. Proc Natl Acad Sci USA 95: 13030–13035

    Article  PubMed  CAS  Google Scholar 

  • Duprez D, Bell EJ, Richardson MK, Archer CW, Wolpert L, Brickell PM, Francis-West PH (1996) Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Mech Dev 57: 145–157

    Article  PubMed  CAS  Google Scholar 

  • Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R (1995) Toward a molecular understanding of skeletal development. Cell 80: 371–378

    Article  PubMed  CAS  Google Scholar 

  • Floyd WED, Zaleske DJ, Schiller AL, Trahan C, Mankin HJ (1987) Vascular events associated with the appearance of the secondary center of ossification in the murine distal femoral epiphysis. J Bone Joint Surg Am 69: 185–190

    PubMed  Google Scholar 

  • Goodrich LV, Johnson RL, Milenkovic L, McMahon JA, Scott MP (1996) Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by hedgehog. Genes Dev 10: 301–312

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Exp Morph 88: 49–92

    Article  Google Scholar 

  • Hinchcliffe JR, Johnson DR (1980) The development of the Vertebrate limb, Oxford University Press, New York

    Google Scholar 

  • Hirsinger E, Duprez D, Jouve C, Malapert P, Cooke J, Pourquie 0 (1997) Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning. Development 124: 4605–4614

    CAS  Google Scholar 

  • Hogan BLM (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10: 1580–1594

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki M, Le AX, Helms JA (1997) Expression of Indian hedgehog, bone morphogenetic protein 6 and gli during skeletal morphogenesis. Mech Dev 69: 197–202

    Article  PubMed  CAS  Google Scholar 

  • Jones CM, Lyons KM, Hogan BL (1991) Involvement of Bone Morphogenetic Protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development 111: 531–542

    PubMed  CAS  Google Scholar 

  • Juppner H, Abou-Samra AB, Freeman M, Kong XF, Schipani E, Richards J, Kolakowski L Jr, Hock J, Potts J Jr, Kronenberg HM (1991) A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 254: 1024–1026

    Article  PubMed  CAS  Google Scholar 

  • Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VL, Kronenberg HM, Mulligan RC (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8: 277–289

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Ishikawa T, Shimabara M, Tanda N, Enomoto-Iwamoto M, Iwamoto M, Kuwana T, Ueki A, Noji S, Nohno T (1996) BMP signaling during bone pattern determination in the developing limb. Development 122: 3557–3566

    PubMed  CAS  Google Scholar 

  • Kingsley DM (1994a) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8: 133–146

    Article  PubMed  CAS  Google Scholar 

  • Kingsley DM (1994b) What do BMPs do in mammals? Clues from the mouse short-ear mutation. Trends Genet 10: 16–21

    Article  PubMed  CAS  Google Scholar 

  • Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M, Defize LHK, Ho C, Mulligan RC, Abou-Samra AB, Juppner H, Segre GV, Kronenberg HM (1996) PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth [see comments]. Science 273: 663–666

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Deeds JD, Segre GV (1995) Expression of parathyroid hormone-related peptide and its receptor messenger ribonucleic acids during fetal development of rats. Endocrinology 136: 453–463

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Lanske B, Karaplis AC, Deeds JD, Kohno H, Nissenson RA, Kronenberg HM, Segre GV (1996) Parathyroid hormone-related peptide delays terminal differentiation of chondrocytes during endochondral bone development. Endocrinology 137: 5109–118

    Article  PubMed  CAS  Google Scholar 

  • Lyons KM, Pelton RW, Hogan BL (1990) Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A) Development 109: 833–844

    PubMed  CAS  Google Scholar 

  • Marcelle C, Stark MR, Bronner-Fraser M (1997) Coordinate actions of BMPs, Wnts, Shh and noggin mediate patterning of the dorsal somite. Development 124: 3955–3963

    Google Scholar 

  • Marigo V, Davey RA, Zuo Y, Cunningham JM, Tabin CJ (1996a) Biochemical evidence that patched is the Hedgehog receptor [see comments]. Nature 384: 176–179

    Article  PubMed  CAS  Google Scholar 

  • Marigo V, Johnson RL, Vortkamp A, Tabin CJ (1996b) Sonic hedgehog differentially regulates expression of GLI and GLI3 during limb development. Dev Biol 180: 273–283

    Article  PubMed  CAS  Google Scholar 

  • Marigo V, Scott MP, Johnson RL, Goodrich LV, Tabin CJ (1996c) Conservation on hedgehog signaling: induction of a chicken patched homolog by Sonic hedgehog in the developing limb. Development 122: 1225–1233

    PubMed  CAS  Google Scholar 

  • McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM, McMahon AP (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 12: 1438–1452

    Article  PubMed  CAS  Google Scholar 

  • Merino R, Ganan Y, Macias D, Economides AN, Sampath KT, Hurle JM (1998) Morphogenesis of digits in the avian limb is controlled by FGFs, TGFbetas, and noggin through BMP signaling. Dev Biol 200: 35–45

    Google Scholar 

  • Pathi S, Rutenberg JB, Johnson RL, Vortkamp A (1999) Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev Biol 209: 239–253

    Article  PubMed  CAS  Google Scholar 

  • Piccolo S, Agius E, Lu B, Goodman S, Dale L, De Robertis EM (1997) Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91: 407–146

    Article  PubMed  CAS  Google Scholar 

  • Piccolo S, Sasai Y, Lu B, De Robertis E (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP4. Cell 86: 589–598

    Article  PubMed  CAS  Google Scholar 

  • Reshef R, Maroto M, Lassar AB (1998) Regulation of dorsal somitic cell fates: BMPs and Noggin control the timing and pattern of myogenic regulator expression. Genes Dev 12: 290–303

    Google Scholar 

  • Ruppert JM, Kinzler KW, Wong Ai, Bigner SH, Kao F-T, Law ML, Seuanez HN, O’Brian SJ, Vogelstein B (1988) The GLI-Kruppel famiy of human genes. Mol. Cel. Biol. 8: 3104–3313

    Google Scholar 

  • Sandberg MM, Aro HT, Vuorio EI (1993) Gene expression during bone repair. Clin Orthop 298: 292–312

    Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis E. M (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79: 779–90

    Google Scholar 

  • Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70: 829–840

    Article  PubMed  CAS  Google Scholar 

  • Smith WC, Knecht AK, Wu M, Harland RM (1993) Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature 361: 547–59

    Article  PubMed  CAS  Google Scholar 

  • Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, Scott MP, Pennica D, Goddard A, Phillips H, Noll M, Hooper JE, de Sauvage F, Rosenthal A (1996) The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog [see comments]. Nature 384: 129–134

    Article  PubMed  CAS  Google Scholar 

  • Suva LJ, Winslow GA, Wettenhall RE, Hammonds RG, Moseley JM, Diefenbach-Jagger H, Rodda CP, Kemp BE, Rodriguez H, Chen EY (1987) A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science 237: 893–896

    Article  PubMed  CAS  Google Scholar 

  • Tabin CJ, McMahon AP (1997) Recent advances in Hedgehog signalling. Trends Cell Biol 7: 442–446

    Article  PubMed  CAS  Google Scholar 

  • Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTHrelated protein [see comments]. Science 273: 613–622

    Article  PubMed  CAS  Google Scholar 

  • Vortkamp A, Pathi S, Peretti GM, Caruso EM, Zaleske DJ, Tabin CJ (1998) Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev 71: 65–76

    Article  PubMed  CAS  Google Scholar 

  • Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA 93: 10240–10245

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman LB, De Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86: 599–606

    Article  PubMed  CAS  Google Scholar 

  • Zou H, Wieser R, Massague J, Niswander L (1997) Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev 11: 2191–2203

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vortkamp, A. (2000). The Indian Hedgehog — PTHrP System in Bone Development. In: Nüsslein-Volhard, C., Krätzschmar, J. (eds) Of Fish, Fly, Worm, and Man. Ernst Schering Research Foundation Workshop, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04264-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04264-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04266-3

  • Online ISBN: 978-3-662-04264-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics