Skip to main content

Abstract

This chapter discusses the grating structure as the most fundamental element of SAW devices. In addition to the fundamentals, modeling based on the equivalent circuit and basic properties are included. The behavior of metallic gratings is also discussed by using a simple and effective theory developed by Bløtekjær et al. [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Bløtekjr, K.A. Ingebrigtsen and H. Skeie: A Method for Analysing Waves in Structures Consisting of Metallic Strips on Dispersive Media, IEEE Trans. Electron. Devices, ED-20 (1973) pp. 1133–1138.

    Google Scholar 

  2. K. Bløekjær, K.A. Ingebrigtsen and H. Skeie: Acoustic Surface Waves in Piezoelectric Materials with Periodic Metallic Strips on the Substrate, IEEE Trans. Electron. Devices, ED-20 (1973) pp. 1139–1146.

    Google Scholar 

  3. P. Hartemann: Ion Implanted Acoustic-Surface-Wave Resonators, Appl. Phys. Lett., 28 (1976) pp. 73–75.

    Article  Google Scholar 

  4. R.V. Schmidt: Acoustic Surface Wave Velocity Perturbation in LiNbO3 by Diffusion of Metals, Appl. Phys. Lett., 27 (1975) pp. 8–10.

    Google Scholar 

  5. R.C.M. Li, J.A. Alusow and R.C. Williamson: Experimental Exploration of the Limits of Achievable Q of Grooved Surface-Wave Resonators, Proc. IEEE Ultrason. Symp. (1975) pp. 279–283.

    Google Scholar 

  6. R.E. Collin: Field Theory of Guided Waves, Chap. 9, McGraw-Hill, New York (1960) pp. 368–408.

    Google Scholar 

  7. R.C.M. Li and J. Melngailis: The Influence of Stored Energy at Step Discontinuities on the Behavior of Surface-Wave Gratings, IEEE Trans. Sonics and Ultrason., SU-22 (1975) pp. 189–198.

    Google Scholar 

  8. M. Takeuchi and K. Yamanouchi: New type of SAW Reflectors and Resonators Consisting of Reflecting Elements with Positive and Negative Reflection Coefficients, IEEE Trans. Ultrason., Ferroelec. and Freq. Contr., UFFC-33 (1986) pp. 369.

    Google Scholar 

  9. K. Hashimoto and M. Yamaguchi: SAW Device Simulation Using Boundary Element Method, Jpn. J. Appl. Phys., 29, Suppl. 29–1 (1990) pp. 122–124.

    Google Scholar 

  10. K. Hashimoto and M. Yamaguchi: Analysis of Excitation and Propagation of Acoustic Waves under Periodic Metallic-Grating Structure for SAW Device Modeling, Proc. IEEE Ultrason. Symp. (1993) pp. 143–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hashimoto, Ky. (2000). Grating. In: Surface Acoustic Wave Devices in Telecommunications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04223-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04223-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08659-5

  • Online ISBN: 978-3-662-04223-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics