Skip to main content

Assessing the Ability of Roots for Nutrient Acquisition

  • Chapter
Root Methods

Abstract

Nutrient acquisition by roots from soil is a complex process which is dependent on several root features: (1) morphological root characteristics, including mycorrhizal associations, which determine the extent of the interface between plant and soil (2) ability to modify the nutrient availability in the rhizosphere, and (3) ability for nutrient uptake through the plasma membranes (for reviews see Barber 1984; Clarkson 1985; Marschner 1995). The relative importance of these factors for nutrient acquisition is dependent on environmental conditions and the specific nutrient, particularly its chemical availability and mobility in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Brundrett MC, Melville L, Peterson RL (1994) Practical methods in mycorrhizal research. Mycologue Publications, Waterloo, Canada

    Google Scholar 

  • Clarkson DT (1996) Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. 2nd edn. Marcel Dekker, New York, pp 483–510

    Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5: 29–56

    Article  Google Scholar 

  • Jones JB Jr, Case VW (1990) Sampling, handling and analyzing plant tissue samples. In: Westerman RL (ed) Soil testing and plant analysis. Soil Science Society of America, Madison, pp 389–427

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

References

  • Alef K (1995) Sterilization of soil and inhibition of microbial activity. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, London, pp 52–54

    Google Scholar 

  • Amann C, Amberger A (1989) Phosphorus efficiency of buckwheat (Fagopyrum esculentum). Z Pflanzenernähr Bodenkd 152: 181–189

    Article  CAS  Google Scholar 

  • Armstrong J, Armstrong W, Beckett PM (1992) Venturi-and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol 120: 197–207

    Article  Google Scholar 

  • Aslam M, Travis RL, Huffaker RC (1994) Stimulation of nitrate and nitrite efflux by ammonium in barley (Hordeum vulgare L.) seedlings. Plant Physiol 106: 1293–1301

    PubMed  CAS  Google Scholar 

  • Azaizeh HA, Marschner H, Römheld V, Wittenmayer L (1995) Effects of vesicular-arbuscular fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5: 321–327

    Article  Google Scholar 

  • Barber DA, Gunn KB (1974) The effect of mechanical forces on the exudation of organic substances by the roots of cereal plants grown under sterile conditions. New Phytol 73: 39–45

    Article  CAS  Google Scholar 

  • Barber SA (1984) Soil nutrient bioavailability. A mechanistic approach. John Wiley, New York

    Google Scholar 

  • Barber SA, Ozanne PG (1970) Autoradiographic evidence for the differential effect of four plant species in altering the Ca content of the rhizosphere soil. Soil Sci Soc Am Proc 34: 635–637

    Article  CAS  Google Scholar 

  • Bartlett EM, Lewis DH (1973) Surface phosphatase activity of mycorrhizal roots of beech. Soil Biol Biochem 5: 249–257

    Article  CAS  Google Scholar 

  • Basson WD, Bohne RG, Stanton DA (1969) An automated procedure for the determination of boron in plant tissue. Analyst 94: 1135–1141

    Article  CAS  Google Scholar 

  • Benjamin LR, Peach L, van Woerden IC, Oppelaar A (1996) A technique to estimate the radial extent of active mineral absorption by individual plants in carrot stands. J Exp Bot 47: 687–692

    Article  CAS  Google Scholar 

  • Bhat KKS, Nye PH (1973) Diffusion of phosphate to the plant roots in soil. Quantitative autoradiography of the depletion zone. Plant Soil 38: 161–175

    Google Scholar 

  • Bieleski RL, Johnson PN (1972) The external location of phosphatase activity in phosphorus-deficient Spirodela oligorrhiza. Aust J Biol Sci 25: 707–720

    CAS  Google Scholar 

  • Bienfait HF, Bino R), van der Bliek AM, Duivenvoorden JR, Fontaine JM (1983) Characterization of ferric reducing activity in roots of Fe-deficient Phaseolus vulgaris. Physiol Plant 59: 196–202

    Article  CAS  Google Scholar 

  • Bisswanger H (1994) Enzymkinetik. Theorie und Methoden. VCH-Verlag Weinheim

    Google Scholar 

  • Bloom AJ, Caldwell RM (1988) Root excision decreases nutrient absorption and gas fluxes. Plant Physiol 87: 794–796

    Article  PubMed  CAS  Google Scholar 

  • Bloom AJ, Sukrapanna SS (1990) Effects of exposure to ammonium and transplant shock upon the induction of nitrate absorption. Plant Physiol 94: 85–90

    Article  PubMed  CAS  Google Scholar 

  • Boero G, Thien S (1979) Phosphatase activity and phosphorus availability in the rhizosphere of corn roots. In: Harley JL, Russell S (eds) Soil-root interface. Academic Press, London

    Google Scholar 

  • Boeuf-Tremblay V, Plantureux S, Guckert A (1995) Influence of mechanical impedance on root exudation of maize seedlings at two developmental stages. Plant Soil 172: 279–287

    CAS  Google Scholar 

  • Böhm W (1979) Methods of studying root systems. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Brady DJ, Gregory PJ, Fillery IRP (1993) The contribution of different regions of the seminal roots of wheat to uptake of nitrate from soil. Plant Soil 155 /156: 155–158

    Article  Google Scholar 

  • Brown JC, Ambler JE (1974) Iron stress response in tomato (Lycopersicon esculentum). 1. Sites of Fe reduction, absorption and transport. Physiol Plant 31: 221–224

    Google Scholar 

  • Brundrett MC, Piché Y, Peterson RL (1984) A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can J Bot 62: 2128–2134

    Article  Google Scholar 

  • Brundrett MC, Melville L, Peterson RL (1994) Practical methods in mycorrhizal research. Mycologue Publications, Waterloo, Canada

    Google Scholar 

  • Cairney JWG, Ashford AE (1989) Reducing activity at the root surface in Eucalyptus pilularisPisolithus tinctorius ectomycorrhizas. Aust J Plant Physiol 16: 99–105

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1988) Increase in membrane permeability and exudation in roots of zinc deficient plants. J Plant Physiol 132: 356–361

    Article  CAS  Google Scholar 

  • Canning RE, Kramer PJ (1958) Salt absorption and accumulation in various regions of roots. Am J Bot 45: 378–382

    Article  CAS  Google Scholar 

  • Canny MJ, McCully ME (1988) The xylem sap of maize roots: its collection, composition and formation. Aust J Plant Physiol 15: 557–566

    Article  CAS  Google Scholar 

  • Chabot S, Bécard G, Piché Y (1992) Life cycle of Glomus intraradix in root organ culture. Mycologia 84: 315–321

    Article  Google Scholar 

  • Chang CW, Bandurski RS (1964) Exocellular enzymes of corn roots. Plant Physiol 39: 60–64

    Article  PubMed  CAS  Google Scholar 

  • Chapin FS III, Van Cleve K (1989) Approaches to studying nutrient uptake, use and loss in plants. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant physiological ecology. Field methods and instrumentation. Chapman and Hall, London, pp 185–207

    Chapter  Google Scholar 

  • Chapin FS III, Van Cleeve K, Tyron PR (1986) Relationship of ion absorption to growth rate in taiga trees. Oecologia 69: 238–242

    Article  Google Scholar 

  • Claassen N, Barber SA (1974) A method for characterizing the relation between nutrient concentration and flux into roots of intact plants. Plant Physiol 54: 564–568

    Article  PubMed  CAS  Google Scholar 

  • Claassen N, Jungk A (1982) Kaliumdynamik im wurzelnahen Boden in Beziehung zur Kaliumaufnahme von Maispflanzen. Z Pflanzenernähr Bodenkd 145: 513–525

    Article  CAS  Google Scholar 

  • Claassen N, Hendriks L, Jungk A (1981) Erfassung der Mineralstoffverteilung im wurzelnahen Boden durch Autoradiographie. Z Pflanzenernähr Bodenkd 144: 306–316

    Article  CAS  Google Scholar 

  • Clarkson DT (1985) Factors affecting mineral nutrient acquisition by plants. Annu Rev Plant Physiol 36: 77–115

    Article  CAS  Google Scholar 

  • Clarkson DT (1996) Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 483–470

    Google Scholar 

  • Clarkson DT, Saker LR, Purves JV (1989) Depression of nitrate and ammonium transport in barley plants with diminished sulphate status. Evidence of co-regulation of nitrogen and sulphate intake. J Exp Bot 40: 953–963

    Google Scholar 

  • Clarkson DT, Gojon A, Saker LR, Wiersema PK, Purves JV, Tillard P, Arnold GM, Paans AJM, Vaalburg W, Stulen I (1996) Nitrate and ammonium influxes in soybean (Glycine max) roots: direct comparison of “N and 15N tracing. Plant Cell Environ 19: 859–868

    Article  CAS  Google Scholar 

  • Cornish-Bowden A (1995) Analysis of enzyme kinetic data. Oxford University Press, Oxford

    Google Scholar 

  • Cruz C, Lips SH, Martins-Louçao MA (1995) Uptake regions of inorganic nitrogen in roots of carob seedlings. Physiol Plant 95: 167–175

    Article  CAS  Google Scholar 

  • Darrah PR (1996) Rhizodeposition under ambient and elevated CO2 levels. Plant Soil 187: 265–275

    Article  CAS  Google Scholar 

  • Deane-Drummond CE (1990) Biochemical and biophysical aspects of nitrate uptake and its regulation. In: YP Abrol (ed) Nitrogen in higher plants. Research Studies Press, Taunton, UK, 37 pp

    Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107: 315–321

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103: 695–702

    Google Scholar 

  • Dinkelaker B, Marschner H (1992) In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants. Plant Soil 144: 199–205

    Article  CAS  Google Scholar 

  • Dinkelaker B, Römheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12: 285–292

    Article  CAS  Google Scholar 

  • Dinkelaker B, Hahn G, Römheld V, Wolf GA, Marschner H (1993a) Non-destructive methods for demonstrating chemical changes in the rhizosphere I. Description of methods. Plant Soil 155 /156: 67–70

    Article  Google Scholar 

  • Dinkelaker B, Hahn G, Marschner H (1993b) Non-destructive methods for demonstrating chem- ical changes in the rhizosphere II. Application of methods. Plant Soil 155 /156: 71–74

    Article  Google Scholar 

  • Dinkelaker B, Hengeler C, Neumann G, Eltrop L, Marschner H (1996) Root exudates and mobilization of nutrients. In: Rennenberg H, Eschrich W (eds) Trees–contributions to modern tree physiology. SPB Academic Publishing, Amsterdam, pp 3–14

    Google Scholar 

  • Dinkelaker B, Hengeler C, Neumann G, Eltrop L, Marschner H (1997) Root exudates and mobilization of nutrients. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees–contributions to modern tree physiology, Backhuys, Leiden, The Netherlands, pp 441–451

    Google Scholar 

  • Drew MC, Saker LR (1975) Nutrient supply and the growth of the seminal root system in barley. II. Localized compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J Exp Bot 29: 79–90

    Google Scholar 

  • Drew MC, Saker LR (1986) Ion transport to the xylem in aerenchymatous roots of Zea mays L. J Exp Bot 37: 22–33

    Article  CAS  Google Scholar 

  • Drew MC, Saker LR, Barber SA, Jenkins W (1984) Changes in the kinetics of phosphate and potassium absorption in nutrient-deficient barley roots measured by a solution-depletion technique. Planta 160: 490–499

    Article  CAS  Google Scholar 

  • Elliott GC, Lynch J, Läuchli A (1984) Influx and efflux of P in roots of intact maize plants. Plant Physiol 76: 336–341

    Article  PubMed  CAS  Google Scholar 

  • Else MA, Davies WJ, Whitford PN, Hall KC, Jackson MB (1994) Concentrations of abscisic acid and other solutes in xylem sap from root systems of tomato and castor-oil plants are distorted by wounding and variable sap flow rates. J Exp Bot 45: 317–323

    Article  CAS  Google Scholar 

  • Else MA, Hall KC, Arnold GM, Davies WJ, Jackson MB (1995) Export of abscisic acid, 1aminocyclopropane-1-carboxylic acid, phosphate, and nitrate from roots to shoots of flooded tomato plants. Accounting for effects of xylem sap flow rate on concentration and delivery. Plant Physiol 107: 377–384

    Google Scholar 

  • Engels C, Marschner H (1992) Root to shoot translocation of macronutrients in relation to shoot demand in maize (Zea mays L.) grown at different root zone temperatures. Z Pflanzenernähr Bodenkd 155: 121–128

    Article  CAS  Google Scholar 

  • Engels C, Buerkert B, Marschner H (1994) Nitrogen and sugar concentrations in the xylem exudate of field-grown maize at different growth stages and levels of nitrogen fertilization. Eur J Agron 3: 197–204

    CAS  Google Scholar 

  • Epstein E, Schmid WE, Rains DW (1963) Significance and technique of short-term experiments on solute absorption by plant tissue. Plant Cell Physiol 4: 79–84

    CAS  Google Scholar 

  • Ernst M, Römheld V, Marschner H (1989) Estimation of phosphorus uptake capacity by different zones of the primary root of soil-grown maize (Zea mays L.). Z Pflanzenernähr Bodenkd 152: 21–25

    Article  CAS  Google Scholar 

  • Farr E, Vaidynathan V, Nye PH (1969) Measurement of ionic concentration gradients in soil near roots. Soil Sci 107: 385–391

    Article  CAS  Google Scholar 

  • Feldman C (1961) Evaporation of boron from acid solutions and residues. Anal Chem 33: 1916–1920

    Article  CAS  Google Scholar 

  • Felipe MR, Pozuelo JM, Cintas AM (1979) Acid phosphatase localization at the surface of young corn roots. Agrochimica 23: 143–150

    CAS  Google Scholar 

  • Fitter AH (1986) Spatial and temporal patterns of root activity in a species-rich alluvial grassland. Oecologia 69: 594–599

    Article  Google Scholar 

  • Flessa H, Fischer WR (1992) Redoxprozesse in der Rhizosphäre von Land-and Sumpfpflanzen. Z Pflanzenernähr Bodenkd 155: 373–378

    Article  CAS  Google Scholar 

  • Fox TC, Shaff JE, Grusak MA, Norvell WA, Chen Y, Chaney RL, Kochian LV (1996) Direct measurement of 59Fe-labeled Fe“ influx in roots of pea using a chelator buffer system to control free Fe’ in solution. Plant Physiol 111: 93–100

    PubMed  CAS  Google Scholar 

  • Gahoonia TS (1993) Influence of root-induced pH on the solubility of soil aluminium in the rhizosphere. Plant Soil 149: 289–291

    Article  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (1991) A method to study rhizosphere processes in thin soil layers of different proximity to roots. Plant Soil 135: 143–148

    Article  Google Scholar 

  • Gahoonia TS, Nielsen NE (1992) Control of pH at soil-root interface. Plant Soil 140: 49–54

    Article  CAS  Google Scholar 

  • Gahoonia TS, Claassen N, Jungk A (1992) Mobilization of phosphorus in different soils by rye-grass supplied with ammonium and nitrate. Plant Soil 143: 241–248

    Article  Google Scholar 

  • George E, Marschner H, Jakobsen I (1995) Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotechnol 15: 257–270

    Article  Google Scholar 

  • George E, Gorgus E, Schmeisser A, Marschner H (1996) A method to measure nutrient uptake from soil by mycorrhizal hyphae. In: Azcon-Aguilar C, Barea JM. Mycorrhizas in integrated systems from genes to plant development. Office for Official Publications of the European Community, Luxembourg, pp 535–538

    Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet-sieving and decanting. Trans Br Mycol Soc 46: 235–244

    Article  Google Scholar 

  • Gericke S, Kurmies B (1952) Die colorimetrische Phosphorsäurebestimmung mit AmmoniumVanadat-Molybdat and ihre Anwendung in der Pflanzenanalyse. Z Pflanzenernähr Düng Bodenkd 59: 235–247

    CAS  Google Scholar 

  • Gerke J, Römer W, Jungk A (1994) The excretion of citric and malic acid by proteoid roots of Lupinus albus L.: effects on soil solution concentrations of phosphate, iron, and aluminium in the proteoid rhizosphere samples of an oxisol and a luvisol. Z Pflanzenernähr Bodenkd 157: 289–294

    Article  CAS  Google Scholar 

  • Gil de Carrasco C, Guzman M, Lorente FA, Urrestarazu M (1994) Xylem sap extraction: a method. Commun Soil Sci Plant Anal 25: 1829–1839

    Article  CAS  Google Scholar 

  • Giovanetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84: 489–500

    Article  Google Scholar 

  • Glass ADM, Shaff JE, Kochian LV (1992) Studies of the uptake of nitrate in barley IV. Electrophysiology. Plant Physiol 93: 456–463

    Google Scholar 

  • Gollany HT, Schumacher TE (1993) Combined use of colorimetric and microelectrode methods for evaluating rhizosphere pH. Plant Soil 154: 151–159

    Article  CAS  Google Scholar 

  • Göttlein A, Hell U, Blasek R (1996) A system for microscale tensiometry and lysimetry. Geo-derma 69: 147–156

    Article  Google Scholar 

  • Goyal SS, Huffaker RC (1986) A novel approach and a fully automated microcomputer-based system to study kinetics of NO3-, NO2-, and NH,’ transport simultaneously by intact wheat seedlings. Plant Cell Environ 9: 209–215

    CAS  Google Scholar 

  • Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95: 1160–1162

    Article  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5: 29–56

    Article  Google Scholar 

  • Grierson PF (1992) Organic acids in the rhizosphere of Banksia integrifolia L. Plant Soil 144: 259–265

    Article  CAS  Google Scholar 

  • Grzebisz W, Floris J, van Noordwijk M (1989) Loss of dry matter and cell contents from fibrous roots of sugar beet due to sampling, storage and washing. Plant Soil 113: 53–57

    Article  Google Scholar 

  • Hamel C, Fyles H, Smith DL (1990) Measurement of development of endomycorrhizal mycelium using three different vital stains. New Phytol 115: 297–302

    Article  Google Scholar 

  • Harrison SJ, Lepp NW, Phipps DA (1978) Uptake of copper by excised roots. I. A modified experimental technique for measuring ion uptake by excised roots, and its application in determining uptake characteristics of “free” copper ions in excised Hordeum roots. Z Pflanzenphysiol 90: 443–450

    CAS  Google Scholar 

  • Harrison SJ, Lepp NW, Phipps DA (1979) Uptake of copper by excised roots. II. Copper desorption from the free space. Z Pflanzenphysiol 94: 27–34

    Google Scholar 

  • Harrison-Murray RS, Clarkson DT (1973) Relationships between structural development and the absorption of ions by the root system of Cucurbita pepo. Planta 114: 1–16

    Article  CAS  Google Scholar 

  • Häussling M, Leisen E, Marschner H, Römheld V (1985) An improved method for nondestructive measurements of the pH at the root-soil interface (rhizosphere). J Plant Physiol 117: 371–375

    Article  PubMed  Google Scholar 

  • Häussling M, Jorns CA, Lehmbecker G, Hecht-Buchholz Ch, Marschner H (1988) Ion and water uptake in relation to root development in Norway spruce [Picea abies ( L.) Karst.]. J Plant Physiol 133: 486–491

    Google Scholar 

  • Hawkins H-J, George E (1997) Hydroponic culture of the mycorrhizal fungus Glomus messeae with Linum usitatissimum L., Sorghum bicolor L. and Triticum aestivum L. Plant Soil 196: 143–149

    Article  CAS  Google Scholar 

  • Headley AD, Callaghan TV, Lee JA (1985) The phosphorus economy of the evergreen tundra plant, Lycopodium annotinum. Oikos 45: 235–245

    Article  Google Scholar 

  • Helal HM, Sauerbeck D (1983) A method to study turnover processes in soil layers of different proximity to roots. Soil Biol Biochem 15: 223–225

    Article  Google Scholar 

  • Hendriks L, Jungk A (1981) Erfassung der Mineralstoffverteilung in Wurzelnähe durch getrennte Analyse von Rhizo-and Restboden. Z Pflanzenernähr Bodenkd 144: 276–282

    Article  CAS  Google Scholar 

  • Henriksen GH, Bloom AJ, Spanswick RM (1990) Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion-selective microelectrodes. Plant Physiol 93: 271–280

    Article  PubMed  CAS  Google Scholar 

  • Henriksen GH, Raman DR, Walker LP, Spanswick RM (1992) Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion-selective microelectrodes. II. Patterns of uptake along the root axis and evaluation of the microelectrode flux estimation technique. Plant Physiol 99: 734–747

    Google Scholar 

  • Hether NH, Olsen RA, Jackson LL (1984) Chemical identification of iron reductants exuded by plant roots. J Plant Nutr 7: 667–676

    Article  CAS  Google Scholar 

  • Hodge A, Grayston SI, Ord BG (1996) A novel method for characterisation and quantification of plant root exudates. Plant Soil 184: 97–104

    Article  CAS  Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P-starvation. Plant Soil 113: 161–165

    Google Scholar 

  • Högberg P, Jensen P, Näsholm T, Ohlsson H (1995) Uptake of ‘Mg by excised pine roots: a preliminary study. Plant Soil 172: 323–326

    Article  Google Scholar 

  • Horst WI, Wagner A, Marschner H (1982) Mucilage protects root meristems from aluminium injury. Z Pflanzenphysiol 105: 435–444

    CAS  Google Scholar 

  • Horst WJ, Asher CJ, Cakmak I, Szulkiewicz P, Wissemeier AH (1992) Short-term responses of soybean roots to aluminium. J Plant Physiol 140: 174–178

    Article  CAS  Google Scholar 

  • Hülster A, Marschner H (1994) PCDD/PCDF-Transfer in Zuchini and Tomaten. Veröff PAÖ 8: 579–589

    Google Scholar 

  • Jackson RB, Manwaring JH, Caldwell MM (1990) Rapid physiological adjustment of roots to localized soil enrichment. Nature 344: 58–60

    Article  PubMed  CAS  Google Scholar 

  • Jaillard B, Ruiz L, Arvieu IC (1996) pH mapping in transparent gel using color videodensitometry. Plant Soil 183: 85–95

    Google Scholar 

  • Janzen HH (1990) Deposition of nitrogen into rhizosphere by wheat root. Soil Biol Biochem 22: 1155–1160

    Article  CAS  Google Scholar 

  • Jeschke WD, Pate JS (1995) Mineral nutrition and transport in xylem and phloem of Banksia prionotes ( Proteaceae), a tree with dimorphic root morphology. J Exp Bot 46: 895–905

    Google Scholar 

  • Jeschke WD, Klagges S, Bhatti AS (1996) Collection and composition of xylem sap and root structure in two halophytic species. Plant Soil 172: 97–106

    Article  Google Scholar 

  • Johnson LF, Curl EA (1972) Control of soil environment. In: Johnson LF, Curl EA (eds) Methods for research on the ecology of soil-borne plant pathogens. Burgess Publishing Company, Minneapolis, pp 82–91

    Google Scholar 

  • Johnson JF, Allan DL, Vance CP, Weiblen G (1996) Root carbon dioxide fixation by phosphorus-deficient Lupinus albus. Plant Physiol 112: 19–30

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Darrah PR (1992) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere. I. Resorption of “C labelled glucose, mannose and citric acid. Plant Soil 143: 259–266

    Google Scholar 

  • Jones DL, Darrah PR (1993) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere II. Plant Soil 153: 47–59

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere. Plant Soil 163: 1–12

    CAS  Google Scholar 

  • Jones DL, Darrah PR (1995) Influx and efflux of organic acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow. Plant Soil 173: 103–109

    Article  CAS  Google Scholar 

  • Jones JB Jr, Case VW (1990) Sampling, handling, and analyzing plant tissue samples. In: Westerman RL (ed) Soil testing and plant analysis. Soil Science Society of America, Madison, pp 389–427

    Google Scholar 

  • Kape R, Wex K, Parniske M, Görge E, Wetzel A, Werner D (1992) Legume root metabolites and VA-mycorrhiza development. J Plant Physiol 141: 54–60

    Article  Google Scholar 

  • Karpov EA, Potapov NG (1975) Reducing activity of the root surfaces in corn plants in connection with its differentiation and absorptive capacity. Fiziol Rast 22: 298–304

    Google Scholar 

  • Keith H, Oades IM, Martin IK (1986) Input of carbon to soil from wheat plants. Soil Biol Biochem 18: 445–449

    Article  CAS  Google Scholar 

  • Kraus M, Fusseder A, Beck E (1987) In situ determination of the phosphate gradient around a root by radioautography of frozen soil sections. Plant Soil 97: 407–418

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1995) Compartmentation and flux characteristics of ammonium in spruce. Planta 196: 691–698

    Article  CAS  Google Scholar 

  • Kuchenbuch R, Jungk A (1982) A method for determining concentration profiles at soil-root interface by thin slicing rhizosphere soil. Plant Soil 68: 391–394

    Article  CAS  Google Scholar 

  • Kuchenbuch R, Jungk A (1984) Wirkung der Kaliumdüngung auf die Kaliumverfügbarkeit in der Rhizosphäre von Raps. Z Pflanzenernähr Bodenkd 147: 435–448

    Article  CAS  Google Scholar 

  • Kurien S, Goswami AM, Deb DL (1992) Root activity of two citrus rootstocks assessed using radiotracer techniques. J Hortic Sci 67: 87–94

    CAS  Google Scholar 

  • Lavy TL, Barber SA (1964) Movement of molybdenum in soil and its effect on availability to the plants. Soil Sci Soc Am Proc 28: 93–97

    Article  Google Scholar 

  • Lazof DB, Rufty TW Jr, Redinbaugh MG (1992) Localization of nitrate absorption and translocation within morphological regions of the corn root. Plant Physiol 100: 1251–1258

    Article  PubMed  CAS  Google Scholar 

  • Lee RB (1993) Control of net uptake of nutrients by regulation of influx in barley plants recovering from nutrient deficiency. Ann Bot 72: 225–230

    Article  Google Scholar 

  • Lee RB, Clarkson DT (1986) Nitrogen-13 studies of nitrate fluxes in barley roots. I. Compartmental analysis from measurements of 13N efflux. J Exp Bot 37: 1753–1767

    Article  CAS  Google Scholar 

  • Lee RB, Drew MC (1986) Nitrogen-13 studies of nitrate fluxes in barley roots. II. Effect of plant N-status on the kinetic parameters of nitrate influx. J Exp Bot 37: 1768–1779

    Google Scholar 

  • Leiser AT (1968) A mucilaginous root sheat in Ericaceae. Am J Bot 55: 391–398

    Article  Google Scholar 

  • Léon M, Lainé P, Ourry A, Boucaud J (1995) Increased uptake of native soil nitrogen by roots of Lolium multiflorum Lam. after nitrogen fertilization is explained by a stimulation of the uptake process itself. Plant Soil 173: 197–203

    Article  Google Scholar 

  • Li XL, George E, Marschner H (1991) Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol 119: 397–404

    Article  CAS  Google Scholar 

  • Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol 85: 315–317

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1996) Mechanisms of potassium absorption by higher plant roots. Physiol Plant 96: 158–168

    Article  CAS  Google Scholar 

  • Macduff JH, Jackson SB (1992) Influx and efflux of nitrate and ammonium in Italian ryegrass and white clover roots: comparisons between effects of darkness and defoliation. J Exp Bot 43: 525–535

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Marschner H, Richter C (1973) Akkumulation and Translokation von K’, Na’ and Ca’ bei Angebot zu einzelnen Wurzelzonen von Maiskeimpflanzen. Z Pflanzenernähr Bodenkd 135: 1–15

    Google Scholar 

  • Marschner H, Römheld V (1983) In vivo measurement of root-induced pH changes at the soil-root interface: effect of plant species and nitrogen source. Z Pflanzenphysiol 111: 241–251

    CAS  Google Scholar 

  • Marschner H, Römheld V, Ossenberg-Neuhaus H (1982) Rapid method for measuring changes in pH and reducing processes along roots of intact plants. Z Pflanzenphysiol 105: 407–416

    Google Scholar 

  • Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9: 695–713

    Article  CAS  Google Scholar 

  • Marschner H, Römheld V, Kissel M (1987) Localization of phytosiderophore release and iron uptake along intact barley roots. Physiol Plant 71: 157–162

    Article  CAS  Google Scholar 

  • Marschner H, Häussling M, George E (1991) Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway spruce [Picea abies ( L.) Karst.]. Trees 5: 14–21

    Google Scholar 

  • Matzner SL, Richards JH (1996) Sagebrush (Artemisia tridentata Nutt.) roots maintain nutrient uptake capacity under water stress. J Exp Bot 47: 1045–1056

    Article  CAS  Google Scholar 

  • McKane RB, Grigal DF (1990) Spatiotemporal differences in 15N uptake and the organization of an old-field plant community. Ecology 71: 1126–1132

    Article  Google Scholar 

  • Meharg AA, Kilham K (1991) A novel method of quantifying root exudation in the presence of soil microflora. Plant Soil 133: 111–116

    Article  Google Scholar 

  • Meharg AA, Kilham K (1995) Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms. Plant Soil 170: 345–349

    Article  CAS  Google Scholar 

  • Miller AJ, Smith SJ (1996) Nitrate transport and compartmentation in cereal root cells. J Exp Bot 47: 843–854

    Article  CAS  Google Scholar 

  • Miller DM (1981) Pressure-flow characteristics of the roots of Zea mays. Plant Soil 63: 15–18

    Article  Google Scholar 

  • Minorsky PV, Spanswick RM (1989) Electrophysiological evidence for a role for calcium in temperature sensing by roots of cucumber seedlings. Plant Cell Environ 12: 137–143

    Article  CAS  Google Scholar 

  • Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminum tolerance in snapbeans. Root exudation of citric acid. Plant Physiol 96: 737–743

    Google Scholar 

  • Morel JL, Mench M, Guckert A (1986) Measurement of Pb’, Cu’ and Cd’ binding with mucilage exudates from maize (Zea mays L.) roots. Biol Fertil Soils 2: 29–34

    Article  Google Scholar 

  • Moritsugu M, Shibasaka M, Kawasaki T (1993) Where is the most important and efficient site for absorption and translocation of cations in excised barley roots? Soil Sci Plant Nutr 39: 299–307

    Article  CAS  Google Scholar 

  • Muller B, Tillard P, Touraine B (1995) Nitrate fluxes in soybean seedling roots and their response to amino acids: an approach using 15N. Plant Cell Environ 18: 1267–1279

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural water. Anal Chim Acta 27: 31–36

    Article  CAS  Google Scholar 

  • Neumann G, Dinkelaker B, Marschner H (1995) Kurzzeitige Abgabe organischer Säuren aus Proteoidwurzeln von Hakea undulata (Proteaceae). In: Merbach W (ed) Pflanzliche Stoffaufnahme and mikrobielle Wechselwirkungen in der Rhizosphäre. BG Teubner, Stuttgart, pp 129–136

    Google Scholar 

  • Newman IA, Kochian LV, Grusak MA, Lucas WJ (1987) Fluxes of H’ and K’ in corn roots: characterization and stoichiometries using microelectrodes. Plant Physiol 84: 1177–1184

    Article  PubMed  CAS  Google Scholar 

  • Norris JR, Read DJ, Varma AK (1992) Methods in microbiology, vol 24. Academic Press, London Ogner G (1983) Digestion of plants and organic soils using nitric acid, hydrogen peroxide and UV radiation. Commun Soil Sci Plant Anal 14: 936–943

    Google Scholar 

  • Ohwaki Y, Hirata H (1990) Phosphorus absorption by chickpea (Cicer arietinum) as affected by VA mycorrhiza and carboxylic acids in root exudates. In: van Beusichem ML (ed) Plant nutrition–physiology and applications. Kluwer, Amsterdam, pp 171–177

    Chapter  Google Scholar 

  • Ohwaki Y, Hirata H (1992) Differences in carboxylic acid exudation among P-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipid levels in roots. Soil Sci Plant Nutr 38: 235–243

    Article  CAS  Google Scholar 

  • Olsson PA, Bääth E, Jakobson I (1997) Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl Environ Microbiol 63: 3531–3538

    PubMed  CAS  Google Scholar 

  • Papavizas GC, Davey CB (1961) Extent and nature of the rhizosphere of lupinus. Plant Soil 14: 215–236

    Article  Google Scholar 

  • Passioura JB (1972) Quantitative autoradiography in the presence of crossfire. In: Lüttge U (ed) Microradioautography and Electron Probe Analysis, Springer, Berlin Heidelberg New York, pp 49–59

    Chapter  Google Scholar 

  • Passioura JB, Munns R (1984) Hydraulic resistance of plants. II. Effects of rooting medium, and time of day, in barley and lupin. Aust J Plant Physiol 11: 341–350

    Google Scholar 

  • Pearson RW (1974) Significance of rooting pattern to crop production and some problems of root research. In: Carson EW (ed) The Plant Root and Its Environment. The University Press of Virginia, Charlottesville, pp 247–270

    Google Scholar 

  • Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196: 788–795

    Article  CAS  Google Scholar 

  • Petersen W, Böttger M (1991) Contribution of organic acids to the acidification of the rhizosphere of maize seedlings. Plant Soil 132: 159–163

    CAS  Google Scholar 

  • Powlson DS, Jenkinson DS (1976a) The effects of biocidal treatments on metabolism in soil. I. Fumigation with chloroform. Soil Biol Biochem 8: 167–177

    Google Scholar 

  • Powlson DS, Jenkinson DS (1976b) The effects of biocidal treatments on metabolism in soil. II. Gamma irradiation, autoclaving. Soil Biol Biochem 8: 179–188

    Google Scholar 

  • Prikryl Z, Vancura V (1980) Root exudates of plants. VI. Wheat exudation as dependent on growth, concentration gradient of exudates and the presence of bacteria. Plant Soil 57: 69–83

    Google Scholar 

  • Reidenbach G, Horst WJ (1995) Bedeutung verschiedener Wurzelzonen für die Nitrataufnahmerate bei Mais (Zea mays L.). VDLUFA-Schriftenr 40: 121–124

    Google Scholar 

  • Reining E, Merbach W, Knof G (1995) 15 N distribution in wheat and chemical fractionation of root-borne 15 N in the soil. Isotopes Environ Health Stud 31: 345–349

    Google Scholar 

  • Riley D, Barber SA (1971) Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root induced pH changes at the root-soil interface. Soil Sci Soc Am Proc 35: 301–306

    Article  CAS  Google Scholar 

  • Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130: 127–134

    Article  Google Scholar 

  • Rufty TW Jr, Thomas RF, Remmler JL, Campbell WH, Volk RJ (1986) Intercellular localization of nitrate reductase in roots. Plant Physiol 82: 675–680

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Tadano T (1993) Characteristics of response of acid phosphatase secreted by the roots of several crops to various conditions in the growth media. Soil Sci Plant Nutr 39: 437–444

    Article  CAS  Google Scholar 

  • Sanders FE (1971) Effect of root and soil properties on the uptake of nutrients by competing roots. D Phil Thesis, Oxford, England

    Google Scholar 

  • Schaffer GF, Peterson RL (1993) Modifications to clearing methods used in combination with vital staining of roots colonized with vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 4: 29–35

    Article  Google Scholar 

  • Schaller G, Fischer WR (1985) pH-Änderungen in der Rhizosphäre von Mais and Erdnußwurzeln. Z Pflanzenernähr Bodenkd 148: 306–320

    Google Scholar 

  • Schenk NC (1982) Methods and principles of mycorrhizal research. The American Phytopathological Society, St Paul, Minnesota

    Google Scholar 

  • Schönwitz R, Ziegler H (1982) Exudation of water soluble vitamins and some carbohydrates by intact roots of maize seedlings (Zea mays L.) into a mineral nutrient solution. Z Pflanzenphysiol 107: 7–14

    Google Scholar 

  • Schwab SM, Menge JA, Leonard RT (1983) Quantitative and qualitative effects of phosphorus on extracts and exudates of sudangrass roots in relation to vesicular-arbuscular mycorrhiza formation. Plant Physiol 73: 761–765

    Article  PubMed  CAS  Google Scholar 

  • Seggewiss B, Jungk A (1988) Einfluss der Kaliumdynamik im wurzelnahen Boden auf die Magnesiumaufnahme von Pflanzen. Z Pflanzenernähr Bodenkd 151: 91–96

    Article  CAS  Google Scholar 

  • Shepherd T, Davies HV (1994a) Effect of exogenous amino acids, glucose and citric acid on the patterns of short-term accumulation and loss of amino acids in the root-zone of sand-cultured forage rape (Brassica napus L.). Plant Soil 158: 111–118

    Article  CAS  Google Scholar 

  • Shepherd T, Davies HV (1994b) Patterns of short-term amino acid accumulation and loss in the root-zone of liquid cultured forage rape (Brassica napus L.). Plant Soil 158: 99–109

    Article  CAS  Google Scholar 

  • Siddiqi MY, Glass ADM (1987) Regulation of K+ influx in barley: evidence for a direct control of influx by K’ concentration of root cells. J Exp Bot 38: 935–947

    Article  Google Scholar 

  • Siddiqi MY, Glass ADM, Ruth TJ, Rufty TW Jr (1990) Studies of the uptake of nitrate in barley. I. Kinetics of 13NO3 influx. Plant Physiol 93: 1426–1432

    Article  PubMed  CAS  Google Scholar 

  • Siddiqi MY, Glass ADM, Ruth TJ (1991) Studies of the uptake of nitrate in barley. III. Compartmentation of NO3. J Exp Bot 42: 1455–1463

    Article  CAS  Google Scholar 

  • Siebrecht S, Mäck G, Tischner R (1995) Function and contribution of the root tip in the induction of NO3- uptake along the barley root axis. J Exp Bot 46: 1669–1676

    Article  CAS  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agriculture. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), Eschborn, Germany

    Google Scholar 

  • Sihna BK, Singh NT (1976) Salt distribution around roots of wheat under different transpiration rates. Plant Soil 44: 141–147

    Article  Google Scholar 

  • Simon L (1996) Phylogeny of the Glomales - deciphering the past to understand the present. New Phytol 133: 95–101

    Article  Google Scholar 

  • Smart DR, Ferro A, Ritchie K, Bugbee BG (1995) On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations. Physiol Plant 95: 533–540

    Article  PubMed  CAS  Google Scholar 

  • Smiley RW (1974) Rhizosphere pH as influenced by plants, soils and nitrogen fertilizers. Soil Sci Soc Am Proc 38: 795–799

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Starkey RL (1931) Some influences of the development of higher plants upon the microorganisms in the soil: IV. Influences of proximity to roots on abundance and activity of micro-organisms. Soil Sci 32: 367–393

    Article  CAS  Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1997) Inhibition of Fusarium oxysporum f. sp. dianthi in the non-VAM species Dianthus caryophyllus by co-culture with Tagetes patula companion plants colonized by Glomus intraradices. Can J Bot 75: 998–1005

    Article  Google Scholar 

  • Steyn WJA (1959) Leaf analysis. Errors involved in the preparative phase. J Agric Food Chem 7: 344–348

    Article  CAS  Google Scholar 

  • Swiader JM, Freiji FG (1996) Characterizing nitrate uptake in lettuce using very-sensitive ion chromatography. J Plant Nutr 19: 15–27

    Article  CAS  Google Scholar 

  • Tadano T, Sakai H (1991) Secretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditions. Soil Sci Plant Nutr 37: 129–140

    Article  CAS  Google Scholar 

  • Tagaki S, Nomoto K, Takemoto T (1984) Physiological aspect of muginieic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7: 469–477

    Article  Google Scholar 

  • Tang C-S, Young C-C (1982) Collection and identification of allelopathic compounds from the undisturbed root system of Bigalte Limpograss (Hemarthria altissima). Plant Physiol 69: 155–160

    Article  PubMed  CAS  Google Scholar 

  • Tanner W, Beevers H (1990) Does transpiration have an essential function in long-distance transport in plants? Plant Cell Environ 13: 745–750

    Article  CAS  Google Scholar 

  • Tarafdar JC, Jungk A (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soils 3: 199–204

    Article  CAS  Google Scholar 

  • Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87: 560–573

    Article  Google Scholar 

  • Trolldenier G (1988) Visualisation of oxidizing power of rice roots and of possible participation of bacteria in iron deposition. Z Pflanzenernähr Bodenkd 151: 117–121

    Article  CAS  Google Scholar 

  • Uren NC (1981) Chemical reduction of an insoluble higher oxide of manganese by plant roots. J Plant Nutr 4: 64–71

    Article  Google Scholar 

  • Uren NC, Reisenauer HM (1988) The role of root exudates in nutrient aquisition. Adv Plant Nutr 3: 79–114

    Google Scholar 

  • Van Vuuren MMI, Robinson D, Griffiths BS (1996) Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant Soil 178: 185–192

    Article  Google Scholar 

  • Vaughan V, Cheshire MV, Ord BG (1994) Exudation of peroxidase from roots of Festuca rubra and its effects on exuded phenolic acids. Plant Soil 160: 153–155

    Article  CAS  Google Scholar 

  • von Wirén N, Mori S, Marschner H, Römheld V (1994) Iron inefficiency in maize mutant Ysl (Zea mays L. cv Yellow-Stripe) is caused by a defect in uptake of iron phytosiderophores. Plant Physiol 106: 71–77

    Google Scholar 

  • von Wirén N, Römheld V, Shioiri T, Marschner H (1995) Competition between micro-organisms and roots of barley and sorghum for iron accumulated in the root apoplasm. New Phytol 130: 511–521

    Article  Google Scholar 

  • Weber E, Saxena MC, George E, Marschner H (1993) Effect of vesicular-arbuscular mycorrhiza on vegetative growth and harvest index of chickpea grown in northern Syria. Field Crops Res 32: 115–128

    Article  Google Scholar 

  • Weiß J (1991) Ionenchromatographie, 2nd edn. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  • White PJ, Banfield J, Diaz M (1992) Unidirectional Ca’ fluxes in roots of rye (Secale cereale L.). A comparison of excised roots with roots of intact plants. J Exp Bot 43: 1061–1074

    Google Scholar 

  • White RT Jr, Douthit GE (1985) Use of microwave oven and nitric acid-hydrogen peroxide digestion to prepare botanical materials for elemental analysis. J/Assoc Off Anal Chem 68: 766–769

    CAS  Google Scholar 

  • Wilkinson HF, Loneragen JF, Quirk JP (1968a) Calcium supply to plant roots. Science 161: 1245–1246

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson HF, Loneragen JF, Quirk JP (1968b) The movement of zinc to plant roots. Soil Sci Soc Am Proc 32: 831–833

    Article  Google Scholar 

  • Williams RF (1948) The effects of phosphorus supply on the rates of intake of phosphorus and nitrogen and upon certain aspects of phosphorus metabolism in gramineous plants. Aust J Sci Res B1: 333–361

    Google Scholar 

  • Yoneyama T, Komamura K, Kumazawa K (1975) Nitrogen transport in intact corn roots. Soil Sci Plant Nutr 21: 371–377

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Dr. Dres. h.c. H. Marschner

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engels, C., Neumann, G., Gahoonia, T.S., George, E., Schenk, M. (2000). Assessing the Ability of Roots for Nutrient Acquisition. In: Smit, A.L., Bengough, A.G., Engels, C., van Noordwijk, M., Pellerin, S., van de Geijn, S.C. (eds) Root Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04188-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04188-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08602-1

  • Online ISBN: 978-3-662-04188-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics