Color Image Compression

  • Konstantinos N. Plataniotis
  • Anastasios N. Venetsanopoulos
Part of the Digital Signal Processing book series (DIGSIGNAL)


Over the past few years the world has witnessed a growing demand for visual based information and communications applications. With the arrival of the ‘Information Highway’ such applications as tele-conferencing, digital libraries, video-on-demand, cable shopping and multimedia asset management systems are now common place. Hand-to-hand with the introduction of these systems and the simultaneous improvement in the quality of these applications were the improved hardware and techniques for digital signal processing. The improved hardware which offered greater capabilities in terms of computational power, combined with the sophisticated signal processing techniques that allowed for a much greater flexibility in processing and manipulation, gave rise to new information applications, and advances and better quality in existing applications.


Compression Ratio Discrete Cosine Transform Wavelet Coefficient Image Compression Human Visual System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raghavan, S. V., Tripathi, S. K. (1998): Networked Multimedia Systems: Concepts, Architecture and Design. Prentice Hall, Upper Sandle River, New Jersey.Google Scholar
  2. 2.
    Netravali, A. N., Haskell, B. G. (1995): Digital Pictures: Representation, Compression and Standards. 2nd edition, Plenum Press, New York, N. Y.Google Scholar
  3. 3.
    Joint Photographic Expertc Group (1998) : JPEG Home Page. jpeghomepage.htm.Google Scholar
  4. 4.
    ISO/IEC, JTC1/SC29/WG1 N505 (ITU-T SG8) (1997): Coding of still images. Electronic Preprint.Google Scholar
  5. 5.
    Pennebaker, W. B., Mitchell J. L. (1993): JPEG Still Image Data Compression Standard. Van Nostrand Reinhold, New York, NY.Google Scholar
  6. 6.
    Chiarglione, L. (1997): MPEG and multimedia communications. IEEE Transactions on Circuits and Systems for Video Technology, 7:5–18.CrossRefGoogle Scholar
  7. 7.
    Chiariglione, L. (1995): MPEG: A technological basis for multimedia applications. IEEE Multimedia, 2 (1) : 85–89.CrossRefGoogle Scholar
  8. 8.
    Jayant, N., Johnston, J. D., Safranek, R. J. (1993) : Signal compression based on models of the human perception. Proceedings of the IEEE, 81 (10) : 1385–1422.CrossRefGoogle Scholar
  9. 9.
    Glenn, W. E. (1993): Digital image compression based on visual perception and scene properties. Society of Motion Picture and Television Engineers Journal, 392–397.Google Scholar
  10. 10.
    Tong, H. (1997): A Perceptually Adaptive JPEG Coder. M.A. Sc. Thesis, Department of Electrical and Computer Engineering, University of Toronto.Google Scholar
  11. 11.
    Gersho, A., Ramamurthi, B. (1982): Image coding using vector quantization. Proceedings of the IEEE Conference on Acoustic Speech and Signal Processing, 1:428–431.Google Scholar
  12. 12.
    Clarke, R. J. (1985) : Transform Coding of Images. Academic Press, New York, N.Y.Google Scholar
  13. 13.
    Rao K. R., Yip, P. (1990): Discrete Cosine Transform: Algorithms, Advances, Applications. Academic Press, London, U.K.Google Scholar
  14. 14.
    Woods, J. W. (1991); Subband Image Coding. Kluwer, Boston, MA.zbMATHGoogle Scholar
  15. 15.
    Shapiro, J. M. (1993) : Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, 41: 3445–3462.CrossRefzbMATHGoogle Scholar
  16. 16.
    Davis, G., Danskin, J., Heasman, R. (1997): Wavelet image compression construction kit. On line report. Google Scholar
  17. 17.
    Kunt, M., Ikonomopoulos, A., Kocher, M. (1985): Second generation image coding techniques. Proceedings of the IEEE, 73 (4) : 549–574.CrossRefGoogle Scholar
  18. 18.
    Ebrahimi, T., Kunt, M. (1998): Visual data compression for multimedia applications. Proceedings of the IEEE, 86 (6): 1109–1125.CrossRefGoogle Scholar
  19. 19.
    Pearson, D. (1995): Developments in model-based video coding. Proceedings of the IEEE, 83: 892–906.CrossRefGoogle Scholar
  20. 20.
    Fisher, Y. (ed.) (1995): Fractal Image Compression: Theory and Application to Digital Images. Springer Verlag, New York, N.Y.Google Scholar
  21. 21.
    Jayant, N (1992) : Signal compression: Technology targets and research directions. IEEE Journal on Selected Areas in Communications, 10:796–818.CrossRefGoogle Scholar
  22. 22.
    Domanski, M., Bartkowiak, M. (1998): Compression. in Sangwine, S.J., Horne, R.E.N. (eds.), The Colour Image Processing Handbook, 242–304, Chapman & Hall, Cambridge, Great Britain.CrossRefGoogle Scholar
  23. 23.
    Penney, W. (1988): Processing pictures in HSI space. The Electronic System Design Magazine, 61–66.Google Scholar
  24. 24.
    Moroney, N. M., Fairchild, M. D. (1995): Color space selection for JPEG image compression. Journal of Electronic Imaging, 4 (4): 373–381.CrossRefGoogle Scholar
  25. 25.
    Kuduvalli, G. R., Rangayyan, R. M. (1992): Performance analysis of reversible image compression techniques for high resolution digital tele radiology. IEEE Transactions on Medical Imaging, 11: 430–445.CrossRefGoogle Scholar
  26. 26.
    Gonzales, R.C., Wood, R. E. (1992): Digital Image Processing. Addison-Wesley, Massachusetts.Google Scholar
  27. 27.
    Roger, R. E., Arnold, J. F., Reversible image compression bounded by noise. IEEE Transactions on Geoscience and Remote Sensing, 32: 19–24.Google Scholar
  28. 28.
    Provine, J. A., Rangayyan, R. M. (1994): Lossless compression of Peano scanned images. Journal of Electronic Imaging, 3 (2): 176–180.CrossRefGoogle Scholar
  29. 29.
    Witten, I. H., Moffat, A., Bell, T. C. (1994) : Managing Gigabytes, Compressing and Indexing Documents and Images. Van Nostrand Reinhold.zbMATHGoogle Scholar
  30. 30.
    Boncelet Jr., C. G., Cobbs, J. R., Moser, A. R. (1988): Error free compression of medical X-ray images. Proceedings of Visual Communications and Image Processing ’88, 1001: 269–276.Google Scholar
  31. 31.
    Wallace, G. K. (1991): The JPEG still picture compression standard. Communications of ACM, 34 (4): 30–44.CrossRefGoogle Scholar
  32. 32.
    Ahmed, N., Natarajan, T., Rao, K. R. (1974): Discrete cosine transform. IEEE Transactions on Computers, 23: 90–93.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Bhaskaran, V., Konstantinides, K. (1995): Image and Video Compression Standards. Kluwer, Boston, MA.Google Scholar
  34. 34.
    Léger, A., Omachi, T., Wallace, C. K. (1991): JPEG still picture compression algorithm. Optical Engineering, 30: 947–954.CrossRefGoogle Scholar
  35. 35.
    Egger, O., Li, W. (1995): Subband coding of images using symmetrical filter banks. IEEE Transactions on Image Processing, 4 (4): 478–485.CrossRefGoogle Scholar
  36. 36.
    Van Dyk, R. E., Rajala, S. A. (1994): Subband/VQ coding of color images with perceptually optimal bit allocation. IEEE Transaction on Circuits and Systems for Video Technology, 4 (1) : 68–82.CrossRefGoogle Scholar
  37. 37.
    Lewis, A. S., Knowles, G. (1992): Image compression using the 2-D wavelet transform. IEEE Transactions on Image Processing, 1 (2): 244–250.CrossRefGoogle Scholar
  38. 38.
    Chen, D., Bovik, A. C. (1990): Visual pattern image coding. IEEE Transactions on Communications, 38 (12) : 2137–2145.CrossRefGoogle Scholar
  39. 39.
    Barnsley, M. F. (1988): Fractals Everywhere. Academic Press, N. Y.zbMATHGoogle Scholar
  40. 40.
    Jacquin, A. E. (1992) : Image coding based on a fractal theory of iterated contractive image transformation. IEEE Transactions on Image Processing, 1: 1830.Google Scholar
  41. 41.
    Lu, G. (1993): Fractal image compression. Signal Processing: Image Communications, 4 (4): 327–343.CrossRefGoogle Scholar
  42. 42.
    Jayant, N. Johnston, J., Safranek, R. (1993): Perceptual coding of images. SPIE Proceedings, 1913: 168–178.CrossRefGoogle Scholar
  43. 43.
    Klein, S. A., Silverstein, A. D., Carney, T. (1992): Relevance of human vision to JPEG-DCT compression. SPIE Proceedings 1666: 200–215.CrossRefGoogle Scholar
  44. 44.
    Nill, N. B. (1985): A visual model weighted cosine transform for image compression and quality assessment. IEEE Transactions on Communications, 33: 551–557.CrossRefGoogle Scholar
  45. 45.
    Rosenholtz, R., Watson, A. B. (1996): Perceptual adaptive JPEG coding. Proceedings, IEEE International Conference on Image Processing, I: 901–904.CrossRefGoogle Scholar
  46. 46.
    Eom, I. K., Kim, H. S., Son, K. S., Kim, Y. S., Kim, J. H. (1995): Image coding using wavelet transform and human visual system. SPIE Proceedings, 2418: 176–183.CrossRefGoogle Scholar
  47. 47.
    Kocher, M., Leonardi, R. (1986) : Adaptive region growing technique using polynomial functions for image approximations. Signal Processing, 11 (1) : 47–60.CrossRefGoogle Scholar
  48. 48.
    Mitchell, J., Pennebaker, W., Fogg, C. E., Legall, D. J. (1997): MPEG Video Compression Standard. Chapman and Hall, N.Y.Google Scholar
  49. 49.
    Fleury, P., Bhattacharjee, S., Piron, L., Ebrahimi, T., Kunt, M. (1998): MPEG4 video verification model: A solution for interactive multimedia applications. Journal of Electronic Imaging, 7 (3): 502–515.CrossRefGoogle Scholar
  50. 50.
    Ramos, M. G. (1998): Perceptually based scalable image coding for packet networks. Journal of Electronic Imaging, 7 (3): 453–463.CrossRefGoogle Scholar
  51. 51.
    Strang, G., Nguyen, T. (1996): Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley, MA.zbMATHGoogle Scholar
  52. 52.
    Chow, C. H., Li, Y. C. (1996): A perceptually tuned subband image coder based on the measure of just noticable distortion profile. IEEE Transaction on Circuits and Systems for Video Technology, 5 (6): 467–476.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Konstantinos N. Plataniotis
    • 1
  • Anastasios N. Venetsanopoulos
    • 1
  1. 1.Department of Electrical & Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations