Skip to main content

Color Image Enhancement and Restoration

  • Chapter
Color Image Processing and Applications

Part of the book series: Digital Signal Processing ((DIGSIGNAL))

Abstract

Enhancement techniques can be used to process an image so that the final result is more suitable than the original image for a specific application. Most of the image enhancement techniques are problem oriented. Image enhancement techniques fall into two broad categories: spatial domain techniques and frequency domain methodologies. The spatial domain refers to the image itself, and spatial domain approaches are based on the direct manipulation of pixels in the image. On the other hand, frequency domain techniques are based on modifying the Fourier transform of the image. Only spatial domain techniques are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Woods, R. E., Gonzalez, R. C. (1981): Real-time digital image enhancement. Proceedings of the IEEE, 69, 634–654.

    Article  Google Scholar 

  2. Bockstein, I. M. (1986): Color equalization method and its application to color image processing. Journal Optical Society of America, 3 (5), 735–737.

    Article  Google Scholar 

  3. Trahanias, P. E., Venetsanopoulos, A. N. (1992): Color image enhancement through 3-D histogram equalization. Proceedings of the 15th IARP International Conference on Pattern Recognition, 1, 545–548.

    Google Scholar 

  4. Faugeras, O. D. (1979): Digitl color image processing within the framework of a human visual model. IEEE Transaction on Acoustics, Speech and Signal Processing, 27 (4), 380–393.

    Article  Google Scholar 

  5. Weeks, A. R., Haque, G. E., Myler, H. R. (1995): Histogram equalization of 24-bit color images in color difference (C-Y) color space. Journal of Electronic Imaging, 4 (1), 15–22.

    Article  Google Scholar 

  6. Strickland, R., Kim, C., McDonell, W. (1987): Digital color image enhancement based on the saturation component. Optical Engineering, 26, 609–616.

    Article  Google Scholar 

  7. Trahanias, P.E., Pitas, I., Venetsanopoulos, A.N. (1994): Color Image Processing. (Advances In 2D and 3D Digital Processing: Techniques and Applications, edited by C.T. Leondes), Academic Press, N.Y..

    Google Scholar 

  8. Jain, A.K. (1989): Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  9. Kuan, D., Phipps, G., Hsueh, A.C. (1998): Autonomous robotic vehicle road following. IEEE Transaction on Pattern Analysis and Machine Intelligence 10 (5): 648–658.

    Article  Google Scholar 

  10. Holyer, R.J., Peckinpaugh, S.H. (1989): Edge detection applied to satellite imagery of the oceans. IEEE Transaction on Geoscience and Remote Sensing 27 (1): 46–56.

    Article  Google Scholar 

  11. Rignot, E., Chellappa, R. (1992): Segmentation of polarimetric synthetic aperture radar data. IEEE Transaction on Image Processing, 1 (3) : 281–299.

    Google Scholar 

  12. Robb, R.A. (ed) (1985): Three-Dimensional Biomedical Imaging. CRC Press, Boca Raton FL.

    Google Scholar 

  13. Mallat, S. G. (1989): A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transaction on Pattern Analysis and Machine Intelligence, 11 (7): 674–693.

    Article  MATH  Google Scholar 

  14. Mallat, S. G. (1989): Multifrequency channel decompositions of images and wavelet models. IEEE Transaction on Acoustics, Speech, and Signal Processing, 37(12): 2091–2110.

    Article  Google Scholar 

  15. Zervakis, M. E. (1992): Optimal restoration of multichannel images based on constrained mean-square estimation. Journal Of Visual Communication and Image Representation, 3 (4): 392–411.

    Article  MathSciNet  Google Scholar 

  16. Sadjadi, F. A. (1990): Perspective on techniques for enhancing speckled imagery. Optical Engineering, 29 (1): 25–31.

    Article  Google Scholar 

  17. Hunt, B. R., Kubler, O. (1984): Karhunen-Loeve multispectral image restoration, part I: Theory. IEEE Transaction on Acoustics, Speech, and Signal Processing, 32 (3) : 592–600.

    Article  Google Scholar 

  18. Galatsanos, N. P., Chin, R. T. (1991) : Restoration of color images by multichannel Kalman filtering. IEEE Transaction on Signal Processing, 39 (10) : 2237–2252.

    Article  Google Scholar 

  19. Angwin, D., Kaufman, H. (1987) : Adaptive restoration of color images. Proceedings of the 26th Conference on Decision and Control, Los Angeles, CA.

    Google Scholar 

  20. Galatsanos, N. P., Chin, R. T. (1989): Digital restoration of multichannel images. IEEE Transaction on Acoustics, Speech, and Signal Processing, 37 (3): 415–422.

    Article  Google Scholar 

  21. Ozkan, M. K., Erdem, A. T., Sezan, M. I., Tekalp, A. M. (1992): Efficient multiframe Wiener restoration of blurred and noisy image sequences. IEEE Transaction on Image Processing 1: 453–476.

    Article  Google Scholar 

  22. Tekalp, A. M., Pavlovic, G. (1990): Multichannel image modeling and Kalman filtering for multispectral image restoration. Signal Processing 19: 221–232.

    Article  MathSciNet  MATH  Google Scholar 

  23. Hunt, B. R. (1973): The application of constrained least squares estimation to image restoration by digital computer. IEEE Transaction on Computers, C-22 (9).

    Google Scholar 

  24. Galatsanos, N. P., Katsaggelos, A.K. (1992): Methods for choosing the regularizing parameter and estimating the noise variance in image restoration and their relation. IEEE Transaction on Image Processing 1 (3): 322–336.

    Article  Google Scholar 

  25. Galatsanos, N. P., Kataggelos, A.K., Chin, R. T., Hillery, A. D. (1991): Least squares restoration of multichannel images. IEEE Transaction on 39 (10) : 2222–2236.

    Google Scholar 

  26. Tom, B.C.S., Lay, K. T., Katsaggelos, A. K. (1996): Multi channel image identification and restoration using the Expectation-Maximization algorithm. Optical Engineering, 35: 241–254.

    Article  Google Scholar 

  27. Sezan, M. I., Trussel, H. J. (1991): Prototype image constraints for set-theoretic image restoration. IEEE Transaction on Signal Processing, 39 (10) : 2227–2285.

    Article  Google Scholar 

  28. Katsaggelos, A. K., Lay, K. T., Galatsanos, N. P. (1993): A general framework for frequency domain multichannel signal processing. IEEE Transaction on Image Processing, 2: 417–420.

    Article  Google Scholar 

  29. Schultz, R., Stevenson, R. (1995): Stochastic modeling and estimation of multispectral image data. IEEE Transaction on Image Processing, 4 (8): 1109–1119.

    Article  Google Scholar 

  30. Zervakis, M. E., Kwon, T. M. (1992): Robust estimation techniques in regularized image restoration. Optical Enginnering, 31 (10)

    Google Scholar 

  31. Kassam, S. A., Poor, H. V. (1985): Robust techniques for signal processing: A survey. Proceedings of the IEEE, 73 (3) : 433–481.

    Google Scholar 

  32. Herbrt, T., Leahy, R. (1989): A generalized EM algorithm for 3-d Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Transaction on Medical Imaging, 8 (2).

    Google Scholar 

  33. Zervakis, M. E., Venetsanopoulos, A. N. (1990): M-Estimators in robust nonlinear image restoration. Optical Engineering, 29 (5): 455–470.

    Article  Google Scholar 

  34. Zervakis, M. E. (1996): Generalized maximum a posteriori processing of multichannel images and applications. Circuits Systems Signal Processing, 15 (2): 233–260.

    Article  MATH  Google Scholar 

  35. Green, P. J. (1990): Bayesian reconstruction from emission tomography data using the modified EM algorithm. IEEE Transaction on Medical Imaging, 9 (1) .

    Google Scholar 

  36. Stevenson, R., Delp, E. (1990) : Fitting curves with discontinuities. Proceedings of the First International Workshop on Robust Computer Vision, Seattle, WA.

    Google Scholar 

  37. Tirakis, A., Delopoulos, A., Kollias, S. (1995): 2-D filter bank design of optimal reconstruction using limited subband information. IEEE Transaction on Image Processing, 4 (8): 1160–1165.

    Article  Google Scholar 

  38. Delopoulos, A., Kollias, S. (1996): Optimal filterbanks for reconstruction from noisy subband components. IEEE Transaction on Signal Processing, 44 (2): 212–224.

    Article  Google Scholar 

  39. Katsaggelos, A. K. (ed.):(1991) : Digital Image Restoration. Springer Verlag, New York, N. Y.

    Google Scholar 

  40. Zhu, W., Galatsanos, N. P., Katsaggelos, A.K. (1995): Regularized multichannel restoration using cross-validation. Graphical Models and Image Processing, 57: pp.38–54.

    Article  Google Scholar 

  41. Chan, C.L., Katsaggelos, A. K., Sahakian, A. V. (1993): Image sequence filtering in quantum-limited noise with applications to low-dose fluoroscopy. IEEE Transaction on Medical Imaging, 12: 610–621.

    Article  Google Scholar 

  42. Han, Y. S., Herrington, D. H., Snyder, W. E. (1992): Quantitative angiography using mean field annealing. Proceedings of Computers in Cardiology 1992, 1: 119–122.

    Article  Google Scholar 

  43. Slump, C. H. (1992): Real time image restoration in diagnostic X-Ray imaging: The effects on quantum noise. 11th IAPR International Conference on Pattern Recognition, 2: 693–696.

    Google Scholar 

  44. Zervakis, M. E., Katsaggelos, A. K., Kwon, T. M. (1995): A class of robust entropic functionals for image restoration. IEEE Transaction on Image Processing, 4: 752–773.

    Article  Google Scholar 

  45. Schafer, R. W., Mersereau, R. M., Richards, M. A. (1981): Constrained iterative restoration algorithms. Proceedings of the IEEE, 69 (4): 432–451.

    Article  Google Scholar 

  46. Bouman, C., Sauer, K. (1993): A generalized Gaussian image model for the edge-preserving MAP estimation. IEEE Transaction on Image Processing, 2 (3): 296–310.

    Article  Google Scholar 

  47. Figueiredo, M. A., Leitao, J. M.M. (1994): Sequential and parallel image restoration: Neural networks implementations. IEEE Transaction on Image Processing 3: 789–801.

    Article  Google Scholar 

  48. Daubechies, I. (1992): Ten Lectures on Wavelets. SIAM, Philadelphia, PA.

    Book  MATH  Google Scholar 

  49. Zervakis, M. E., Kwuon, T. W., Yang, J-S. (1995): Multiresolution image restoration in the wavelet domain. IEEE Transaction on Circuits and Systems TT 42 (9): 578–591

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plataniotis, K.N., Venetsanopoulos, A.N. (2000). Color Image Enhancement and Restoration. In: Color Image Processing and Applications. Digital Signal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04186-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04186-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08626-7

  • Online ISBN: 978-3-662-04186-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics