Color Edge Detection

  • Konstantinos N. Plataniotis
  • Anastasios N. Venetsanopoulos
Part of the Digital Signal Processing book series (DIGSIGNAL)


One of the fundamental tasks in image processing is edge detection. High level image processing, such as object recognition, segmentation, image coding, and robot vision, depend on the accuracy of edge detection. Edges contain essential information about an image. Most edge detection techniques are based on finding maxima in the first derivative of the image function or zero-crossings in the second derivative of the image function. This concept is illustrated for a gray-level image in Fig. 4.1 [4]. The figure shows that the first derivative of the gray-level profile is positive at the leading edge of a transition, negative at the trailing edge, and zero in homogeneous areas. The second derivative is positive for that part of the transition associated with the dark side of the edge, negative for that part of the transition associated with the light side of the edge, and zero in homogeneous areas. In a monochrome image an edge usually corresponds to object boundaries or changes in physical properties such as illumination or reflectance. This definition is more elaborate in the case of color (multispectral) images since more detailed edge information is expected from color edge detection. According to psychological research on human visual system [1], [2], color plays a significant role in the perception of boundaries. Monochrome edge detection may not be sufficient for certain applications since no edges will be detected in gray-level images when neighboring objects have different hues but equal intensities [3].


Color Image Edge Detection Impulse Noise Difference Vector Impulsive Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Treisman, A., Gelade, G. (1980), A feature integration theory of attention, Cogn. Psych., 12, 97–136.CrossRefGoogle Scholar
  2. 2.
    Treisman, A. (1986): Features and objects in visual processing, Scientific America, 25, 114B–125.CrossRefGoogle Scholar
  3. 3.
    A. Koschan, A. (1995): A comparative study on color edge detection, Proc. 2nd Asian Conf. on Computer Vision ACCV’95, III, 574–578.Google Scholar
  4. 4.
    Gonzales, R.C., Wood, R. E. (1992): Digital Image Processing. Addison-Wesley, Massachusetts.Google Scholar
  5. 5.
    Pratt, W.K. (1991): Digital Image Processing. Wiley, New York, N.Y.zbMATHGoogle Scholar
  6. 6.
    Androutsos, P., Androutsos, D., Plataniotis, K.N., Venetsanopoulos, A.N. (1997) : Color edge detectors: an overview. Proceedings, Canadian Conference on Electrical and Computer Engineering, 2, 827–831.Google Scholar
  7. 7.
    Clinque, L., Guerra, C., Levialdi, C. (1994): Reply: On the Paper by R.M. Haralick, CVGIP: Image Understanding, 60 (2), 250–252.CrossRefGoogle Scholar
  8. 8.
    Heath, M., Sarkar, S., Sanocki, T., Bowyer, K. (1998): Comparison of Edge Detectors, Computer Vision and Image Understanding, 69 (1), 38–54.CrossRefGoogle Scholar
  9. 9.
    Heath, M., Sarkar, S., Sanocki, T., Bowyer, K. (1997) : A robust visual method for assessing the relative performance of edge-detection algorithms, IEEE Trans. Pattern Analysis and Machine Intelligence, 19 (12), 1338–1359.CrossRefGoogle Scholar
  10. 10.
    Sobel, L.E. (1970): Camera Models and Machine Perception, Ph. D dissertation, Standford University, California.Google Scholar
  11. 11.
    D. Marr, D., Hildreth, E. (1980): Theory of Edge Detection, Proceedings of the Royal Society of London, B-207, 187–217.CrossRefGoogle Scholar
  12. 12.
    Zenzo, S.D. (1986): A note on the Gradient of a multi-image, Computer Vision Graphics and Image Processing, 36, 1–9.CrossRefGoogle Scholar
  13. 13.
    Scharcanski, J., Venetsanopoulos, A.N. (1997): Edge detection of colour images using directional operators, IEEE Transactions on Circuits and Systems, xx, -.Google Scholar
  14. 14.
    Shiozaki, A. (1986): Edge extraction using entropy operator, Computer Vision Graphics and Image Processing, 36, 116–126.CrossRefGoogle Scholar
  15. 15.
    A. Cumani, A. (1991): Edge detection in multispectral images,” CVGIP: Graphical Models and Image Processing, 53, 40–51.CrossRefzbMATHGoogle Scholar
  16. 16.
    Tranhanias, P.E., Venetsanopoulos, A.N. (1993): Color edge detection using vector order statistics, IEEE Transaction on Image Processing, 2 (2), 259–264.CrossRefGoogle Scholar
  17. 17.
    Tranhanias, P.E., Venetsanopoulos, A.N. (1996): Vector order statistics operators as color edge detectors, IEEE Transaction on Systems Man and Cybernetics-Part B, 26 (1), 135–143.CrossRefGoogle Scholar
  18. 18.
    Scharcanski, J. (1993): Color Texture Representation and Classification, Ph.D. Thesis, University of Waterloo, Waterloo, Ontario, Canada.Google Scholar
  19. 19.
    S. Grossberg, S. (1988): Neural Networks and Natural Intelligence, MIT Press, Massachussets.Google Scholar
  20. 20.
    W.K. Pratt, W.K. (1991) Digital Image Processing, Jone Wiley, N.Y., New York.zbMATHGoogle Scholar
  21. 21.
    Healey, G. (1992): Segmenting images using normalized color, IEEE Trans. on Systems, man and Cybernetics, 22 (1), 64–73.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Poggio, T., Torre, V., Koch, C. (1995): Computational vision and regularization theory, Nature, 317. Google Scholar
  23. 23.
    Witkin, A. (1983): Scale-space filtering, Proceedings of the 8th Int. Joint Conf. on Artificial Intelligence, 2, 1019–1022.Google Scholar
  24. 24.
    P. Beaudet, Rotationally Invariant Image Operators in Int. Joint Conf. on Pattern Recog., pp. 579 – 583, 1987.Google Scholar
  25. 25.
    Y. Yang, Y. (1992): Color edge detection and segmentation using vector analysis, M.A.Sc. Thesis, University of Toronto, Toronto, Ontario, Canada.Google Scholar
  26. 26.
    Rosenfeld, A., Kak, A.C. (1982): Digital Picture Processing, 2nd Edition, Academic Press, N.Y., New York.Google Scholar
  27. 27.
    Nevatia, R. (1977) : A color edge detector and its use in scene segmentation, IEEE Trans. on Systems, Man cand Cybernetics, 7 (11), 820–825.CrossRefGoogle Scholar
  28. 28.
    Robinson, G.S. (1977): Color edge detection, Optical Engineering, 16 (5), 479–484.CrossRefGoogle Scholar
  29. 29.
    R. Machuca, R., Phillips, K. (1983): Applications of vector fields to image processing, IEEE Trans. on Pattern Analalysis and Machine Intelligence, 5 (3), 316–329.CrossRefGoogle Scholar
  30. 30.
    Alshatti, W., Lambert, P. (1993): Using eigenvectors of a vector field for deriving a second directional derivative operator for color images, Proceedings of the 5th International Conference, CAIP’93, 149–156.Google Scholar
  31. 31.
    David, H.A. (1980) : Order Statistics, Wiley, N.Y., New York.Google Scholar
  32. 32.
    Barnett, V. (1976): The ordering of multivariate data, J. Royal Statist. Soc. A, 139 (3), 318–343.CrossRefGoogle Scholar
  33. 33.
    Feechs, R.J., Arce, G.R. (1987): Multidimensional morphologic edge detection, Proceedings SPIE Conf. Visual Comm. and Image Processing, 845, 285–292.Google Scholar
  34. 34.
    Lee, J.S.J., Haralick, R.M., Shapiro, L.G. (1987): Morphologic edge detection, IEEE Journal of Robotic Automation, RA-3 (2), 142–156.CrossRefGoogle Scholar
  35. 35.
    Pitas, I., Venetsanopoulos, A.N. (1990): Nonlinear Digital Filters: Principles and Applications, Kluwer Academic Publishers.zbMATHGoogle Scholar
  36. 36.
    K. Krzanowski, K., (1994): Multivariate Analysis I: Distributions, ordination and inference, Halsted Press, N.Y., New York.zbMATHGoogle Scholar
  37. 37.
    Astola, J., Haavisto, P., Neuvo, Y. (1990): Vector median filters, Proceedings of the IEEE, 78 (4), 678–689.CrossRefGoogle Scholar
  38. 38.
    Plataniotis, K.N., Androutsos, D., Venetsanopoulos, A.N. (1997): Color image filters: The vector directional appoach. Optical Engineering, 36 (9), 2375–2383.CrossRefGoogle Scholar
  39. 39.
    Zhu, Shu-Yu, Plataniotis, K.N., Venetsanopoulos, A.N. (1999): A comprehensive analysis of edge detection in color image processing. Optical Engineering, 38 (4), 612–625.CrossRefGoogle Scholar
  40. 40.
    Zhou, Y.T., Venkateshwar, T., Chellappa, R. (1989): Edge detection and linear feature extraction using a 2D random field model, IEEE Trans. on Pattern Analysis and Machine Intelligence, 11 (1), 84–95.CrossRefGoogle Scholar
  41. 41.
    Proakis, J. G. (1984) : Digital Communications. McGraw Hill, New York, N.Y.Google Scholar
  42. 42.
    Androutsos, P., Androutsos, D., Plataniotis, K.N., Venetsanopoulos, A.N. (1997) : Subjective analysis of edge detectors in color image processing. Image Analysis and Processing, Lecture Notes in Computer Science, 1310, 119–126, Springer, Berlin, Germany.Google Scholar
  43. 43.
    Androutsos, P., Androutsos, D., Plataniotis, K.N., Venetsanopoulos, A.N. (1998): Color edge detectors: a subjective analysis. Proceedings Nonlinear Image Processing IX, 3304, 260–267.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Konstantinos N. Plataniotis
    • 1
  • Anastasios N. Venetsanopoulos
    • 1
  1. 1.Department of Electrical & Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations