Advertisement

Adaptive Image Filters

  • Konstantinos N. Plataniotis
  • Anastasios N. Venetsanopoulos
Part of the Digital Signal Processing book series (DIGSIGNAL)

Abstract

The nonlinear filters described in the previous chapter are usually optimized for a specific type of noise. However, the noise statistics, e.g. the standard deviation, and even the noise probability density function vary from application to application. Sometimes the noise characteristics vary in the same application from image to image. Such cases include the channel noise in image transmission and the atmospheric noise in satellite images. In these environments non-adaptive filters cannot perform well because their characteristics depend on noise and signal characteristics which are unknown. In the area of color image filtering adaptive designs have been recently introduced to address the problem of varying noise characteristics and to guarantee acceptable filtering results even in the case of partially known signaling models [1].

Keywords

Membership Function Adaptive Filter Processing Window Adaptive Design Normalize Mean Square Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pitas, I., Venetsanopoulos, A.N. (1990): Nonlinear Digital Filters: Principles and Applications. Kluwer Academic Publishers, Boston, MA.zbMATHGoogle Scholar
  2. 2.
    J.S. Lee, J.S. (1980): Digital image enhancement and noise filtering by local statistics. IEEE Trans. on Pattern Recognition and Machine Intelligence, 2, 165–168.CrossRefGoogle Scholar
  3. 3.
    Sun, X.Z., Venetsanopoulos, A.N. (1988): Adaptive schemes for noise filtering and edge detection by use of local statistics. IEEE Trans. on Circuit and Systems, 35 (1), 59–69.Google Scholar
  4. 4.
    Cotropoulos, C., Pitas, I (1994): Adaptive nonlinear filter for digital signal/image processing. (Advances In 2D and 3D Digital Processing, Techniques and Applications, edited by C.T. Leondes), Academic Press, 67, 263–317.Google Scholar
  5. 5.
    Kosko, B. (1991): Neural Networks for Signal Processing. Prentice Hall, Englewood Cliffs, N.J., USA.Google Scholar
  6. 6.
    Yin, L., Astola, J., Neuvo, Y., (1993): A new class of nonlinear filters: Neural filters. IEEE Trans. on Signal Processing. 41, 1201–1222.CrossRefzbMATHGoogle Scholar
  7. 7.
    Russo, F. (1996): Nonlinear fuzzy filters: An overview. Proceedings European Signal Processing Conference, VIII, 1709–1712.Google Scholar
  8. 8.
    Y. Choi, Y., Krishnapuram, R., A robust approach to image enhancement based on fuzzy logic. IEEE Trans. on Image Processing, 6 (6), 808–825.Google Scholar
  9. 9.
    Yu, P.T., Chung Chen, R. (1996): Fuzzy stack filters: Their definitions, fundamental properties and application in image processing. IEEE Trans. on Image Processing, 5(6), 838–854.CrossRefGoogle Scholar
  10. 10.
    Russo, F., Ramponi, G. (1996): A fuzzy filter for images corrupted by impulsive noise. IEEE Signal Processing Letters, 3 (6), 168–170.CrossRefGoogle Scholar
  11. 11.
    Plataniotis, K.N., Androutsos, D., Vinayagamoorthy, S., Venetsanopoulos, A.N. (1997): Color image processing using adaptive multichannel filters. IEEE Trans. on Image Processing, 6 (7), 933–950.CrossRefGoogle Scholar
  12. 12.
    Russo, F., Ramponi, G. (1994): Nonlinear fuzzy operators for image processing. Signal Processing, 38 (4), 429–440.CrossRefzbMATHGoogle Scholar
  13. 13.
    Yang, X., Toh, P.S. (1995): Adaptive fuzzy multilevel median filter. IEEE Trans. on Image Processing, 4 (5), 680–682.CrossRefGoogle Scholar
  14. 14.
    Taguchi, A., Kimura, T. (1996): Data-dependent filtering based on if-then rules and else rules. Proceedings of European Signal Processing Conference, VIII, 1713–1716.Google Scholar
  15. 15.
    Arakawa, K., Arakawa, Y. (1991): Digital signal processing using fuzzy clustering. IEICE Transactions, E 74 (11), 3554–3558.Google Scholar
  16. 16.
    Arakawa, K., Arakawa, Y. (1993): Proposal of median-type fuzzy filter and its optimum design. Electronics and Communications in Japan: part 3, 76 (7), 27–35.CrossRefGoogle Scholar
  17. 17.
    Taguchi, A., Izawa, N. (1996): Fuzzy center weighted median filters. Proceedings of European Signal Processing, VIII, 1721–1724.Google Scholar
  18. 18.
    Russo, F. (1997): Nonlinear filtering of noisy images using neuro-fuzzy operators. Proceedings of the IEEE Conference on Image Processing, 1997.Google Scholar
  19. 19.
    Tsai, H-H., Yu, Pao-Ta (1999): Adaptive fuzzy hybrid multichannel filters for color image restoration. Proceedings of the 1999 IEEE Workshop on Nonlinear Signal and Image Processing, I, 134–138.Google Scholar
  20. 20.
    Tsai, H-H., Yu, Pao-Ta (1999): Adaptive fuzzy hybrid multichannel filters for removal of impulsive noise from color images. Signal Processing, 74 (20), 127–152.CrossRefzbMATHGoogle Scholar
  21. 21.
    Kosko, B., (1992): Neural Networks and Fuzzy Systems: A Dynamic Systems Approach to Machine Intelligence. Prentice Hall, Englewood Cliffs, N.J., USA.Google Scholar
  22. 22.
    Plataniotis, K.N., Androutsos, D., Venetsanopoulos, A.N. (1996): Fuzzy adaptive filters for multichannel image processing. Signal Processing Journal, 55 (1), 93–106.CrossRefzbMATHGoogle Scholar
  23. 23.
    Plataniotis, K.N., Androutsos, D., Venetsanopoulos, A.N. (1996): Multichannel filters for image processing. Signal Processing: Image Communications, 9 (2), 143–158.CrossRefGoogle Scholar
  24. 24.
    Mendel, J.M. (1995): Fuzzy logic systems for engineering: A tutorial. Proceedings of the IEEE, 26 (3), 345–377.CrossRefGoogle Scholar
  25. 25.
    Bilgic, t., Turksen, I.B., (1996): Measurement of membership functions: Theoretical and empirical work. Technical report, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada.Google Scholar
  26. 26.
    Zysno, P. (1981): Modelling membership functions. (Empirical Semantics, B. Rieger Editor), Brockmeyer, Bochum, Germany, 350–375.Google Scholar
  27. 27.
    Zimmerman, H.J., Zysno, P. (1996): Quantifying vagueness in decision models. European Journal of Operation Research, 22, 148–154.CrossRefGoogle Scholar
  28. 28.
    H.J. Zimmermann, P. Zysno, Latent connectives in human decision making, Fuzzy Sets and Systems, vol. 4, pp. 37–51, 1980.CrossRefzbMATHGoogle Scholar
  29. 29.
    F.S. Roberts, F.S. (1979): Measurement Theory with Applications to Decision Making, Utility and the Social Sciences. Addison-Wesley, Reading, Massachusetts.Google Scholar
  30. 30.
    Zimmermann, H.J. (1987): Fuzzy Sets, Decision Making and Expert System. Kluwer Academic, Boston, Massachusetts.CrossRefGoogle Scholar
  31. 31.
    Zadeh, L.A. (1965): Fuzzy sets. Information control, 8, 338–353.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Shepard R. N. (1981): Towards a universal law of generalization for psychological science. Science, 237, 1317–1323.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Dombi, J. (1990): Membership function as an evaluation. Fuzzy Sets and Systems, 35, 1–21.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Plataniotis, K.N., Androutsos, D., Sri, V., Venetsanopoulos, A.N. (1995): ‘A Nearest Neighbour Multichannel Filter,’ Electronic Letters, 31, 1910–1911.CrossRefGoogle Scholar
  35. 35.
    Plataniotis, K.N., Androutsos, D., Vinayagamoorthy, S., Venetsanopoulos, A.N. (1996): An adaptive nearest neighbor multichannel filter. IEEE Trans. on Circuits and Systems for Video Technology, 6 (6), 699–703.CrossRefGoogle Scholar
  36. 36.
    Plataniotis, K.N., Androutsos, D., Venetsanopoulos, A.N. (1997): Contentbased colour image filters. Electronic Letters, 33 (3), 202–203.CrossRefGoogle Scholar
  37. 37.
    Plataniotis, K.N., Androutsos, D., Venetsanopoulos, A.N. (1997): Color image filters: The vector directional appoach. Optical Engineering, 36 (9), 2375–2383.CrossRefGoogle Scholar
  38. 38.
    Plataniotis, K.N., Androutsos, D., Venetsanopoulos, A.N. (1996): Color image processing using adaptive vector directional filters. IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, 45 (10), 1414–1419.CrossRefGoogle Scholar
  39. 39.
    Plataniotis, K.N., Androutsos, D., Venetsanopoulos, A.N. (1996): An adaptive multichannel filters for color image processing. Canadian Journal of Electrical & Computer Engineering, 21 (4), 149–152.Google Scholar
  40. 40.
    Grabisch, M., Nguyen, H.T., Walker, E.A. (1996): Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference. Kluwer Academic Publishers, Dordrecht.Google Scholar
  41. 41.
    Fodor, J., Marichal, J., Raibens, M. (1995): Characterization of the ordered weighted averaging operators. IEEE Trans. on Fuzzy Systems, 3 (2), 231–240.CrossRefGoogle Scholar
  42. 42.
    Trahanias, P.E., Venetsanopoulos, A.N. (1993): Vector directional filters. A new class of multichannel image processing filters. IEEE Trans. on Image Processing, 2, 528–534.CrossRefGoogle Scholar
  43. 43.
    Trahanias, P.E., Karakos D., Venetsanopoulos, A.N. (1996): Directional processing of color images: theory and experimental results. IEEE Trans. on Image Processing, 5 (6), 868–880.CrossRefGoogle Scholar
  44. 44.
    Plataniotis, K.N., Androutsos, D., Vinayagamourthy, S., Venetsanopoulos, A.N. (1997): Color image processing using adaptive multichannel filters. IEEE Trans. on Image Processing, 6 (7), 933–950.CrossRefGoogle Scholar
  45. 45.
    Bickel, P.J. (1982): On adaptive estimation. Annals of Statistics, 10, 647–671.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Sage, A.P., Melsa, J.L. (1979): Estimation Theory with Applications to Communication and Control, R.E. Krieger Publishing Co., Huntington N.Y.Google Scholar
  47. 47.
    Box, G.E., Tiao, G.C. (1964): A note on criterion robustness and inference robustness. Biometrika, 51 (2), 169–173.MathSciNetzbMATHGoogle Scholar
  48. 48.
    Box, G.E., Tiao, G.C. (1973): Bayesian Inference in Statistical Analysis. Addison-Wesley publishing Co, Toronto, Canada.zbMATHGoogle Scholar
  49. 49.
    Pan, W., Jeffs, B.D. (1995): Adaptive image restoration using a generalized Gaussian model for unknown noise. IEEE Trans. on Image Processing, 4 (10) 1451–1456.CrossRefGoogle Scholar
  50. 50.
    Plataniotis, K.N. (1994): Distributed Parallel Processing State Estimation Algorithms, Ph.D Dissertation, Florida Institute of Technology, Melbourne, Florida, USA.Google Scholar
  51. 51.
    Kim, H.M., Mendel, J.M., Fuzzy basis functions: Comparisons with other basis functions. IEEE Trans. on Fuzzy Systems, 3 (2), 158–169.Google Scholar
  52. 52.
    Plataniotis, K.N., Androutsos, D., Venetsanopoulos, A.N. (1998): Adaptive multichannel filters for color image processing. Signal Processing: Image Communications, 11 (3), 1998.CrossRefGoogle Scholar
  53. 53.
    Cacoullos, T. (1966): Estimation of a multivariate density. Annals of Statistical Mathematics, 18 (2), 179–189.MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Epanechnikov, V.K. (1969): Non-parametric estimation of a multivariate probability density. Theory Prob. Appl., 14, 153–158.CrossRefGoogle Scholar
  55. 55.
    Fukunaga, K. (1990): Introduction to Statistical Pattern Recognition, Academic Press, Second Edition, London, UK.zbMATHGoogle Scholar
  56. 56.
    Breiman, L., Meisel, W., Purcell, E. (1977): Variable kernel estimates of multivariate densities. Technometrics, 19 (2), 135–144.CrossRefzbMATHGoogle Scholar
  57. 57.
    Rao, Prasaka B.L.S. (1983): Non-parametric functional estimation Academic Press, N.Y.Google Scholar
  58. 58.
    Nadaraya, E.A. (1964): On estimating regression. Theory Probab. Applic., 15, 134–137.CrossRefGoogle Scholar
  59. 59.
    Watson, G.S. (1964): Smooth regression analysis. Sankhya Ser. A, 26, 359–372.MathSciNetzbMATHGoogle Scholar
  60. 60.
    T.J. Wagner, T.J. (1975): Nonparametric estimates of probability density. IEEE Trans. on Information Theory, 21 (4), 438–440.CrossRefzbMATHGoogle Scholar
  61. 61.
    Prat, W.K. (1991): Digital Image Processing. Second Edition, John Wiley, N.Y.Google Scholar
  62. 62.
    Fisher, N.I., Lewis, T., Embleton, B.J.J. (1993): Statistical Analysis of Spherical Data. Cambridge University Press, Paperback Edition, Cambridge.zbMATHGoogle Scholar
  63. 63.
    Plataniotis, K.N., Androutsos, D., Venetsanopoulos, A.N. (1998): Processing color images using vector directional filters: extensions and new results. Proceedings, Nonlinear Image Processing IX, 3304, 268–276.CrossRefGoogle Scholar
  64. 64.
    Srinivasan, A. (1996): Computational issues in the solution of liquid crystalline polymer flow problems. Ph.D Dissertation, Department of Computer Science, University of California, Santa Barbara, CA.Google Scholar
  65. 65.
    Matheron, G. M. (1975): Random Sets of Integral Geometry. Wiley, New York, N.Y.Google Scholar
  66. 66.
    Serra, J. (1982): Image Analysis and Mathematical Morphology. Academic Press, London, U.K.zbMATHGoogle Scholar
  67. 67.
    Sternberg, S.R. (1986): Greyscale morphology. Computer Vision, Graphics and Image Processing, 35: 333–355.CrossRefGoogle Scholar
  68. 68.
    Serra, J. (1986): Introduction to mathematical morphology. Computer Vision, Graphics and Image Processing, 35: 283–305.CrossRefzbMATHGoogle Scholar
  69. 69.
    Smith, D. G. (1992): Fast Adaptive Video Processing: A Geometrical Approach. M.A.Sc. thesis, University of Toronto, Toronto, Canada.Google Scholar
  70. 70.
    Maragos, P.A. (1990): Morphological systems for multidimensional signal processing. Proceedings of the IEEE, 78 (4): 690–709.CrossRefGoogle Scholar
  71. 71.
    Serra, J. (1988): Image Analysis and Mathematical Morphology: Theoretical Advances. Academic Press, London, U.K.Google Scholar
  72. 72.
    Cheng, F., Venetsanopoulos, A.N. (1992): An adaptive morphological filter for image processing. IEEE Trans. on Image Processing, 1 (4), 533–539.CrossRefGoogle Scholar
  73. 73.
    Cheng, F., Venetsanopoulos, A.N. (1999): Adaptive morphological operators, fast algorithms and their applications. Pattern Recognition, forthcoming special issue on Mathematical Morphology and its applications.Google Scholar
  74. 74.
    Deng-Wong, P., Cheng, F., Venetsanopoulos, A.N. (1996): Adaptive morphological filters for color image enhancement. Journal of Intelligence and Robotic Systems, 15: 181–207.CrossRefGoogle Scholar
  75. 75.
    Maragos, P. (1996): Differential morphology and image processing. IEEE Trans. on Image Processing, 5 (6), 922–937.CrossRefGoogle Scholar
  76. 76.
    Astola, J., Haavisto, P., Neuvo, Y. (1990): Vector median filters. Proceedings of the IEEE, 78, 678–689.CrossRefGoogle Scholar
  77. 77.
    Trahanias, P.E., Pitas, I., Venetsanopoulos, A.N. (1994): Color Image Processing. (Advances In 2D and 3D Digital Processing: Techniques and Applications, edited by C.T. Leondes), Academic Press, 67, 45–90.Google Scholar
  78. 78.
    Karakos, D., Trahanias, P.E. (1997): Generalized multichannel image filtering structures. IEEE Trans. on Image Processing, 6 (7), 1038–1045.CrossRefGoogle Scholar
  79. 79.
    Gabbouj, M., Cheickh, F.A. (1996): Vector median-vector directional hybrid filter for color image restorartion, Proceedings of the European Signal Processing Conference, VIII, 879–881.Google Scholar
  80. 80.
    Poynton, C.A. (1996): A Technical Introduction to Digital Video. ( http://www.inforamp.net/~poynton/Poynton-T-I-Digital-Video.html), Prentice Hall, Toronto.Google Scholar
  81. 81.
    Engeldrum, P.G. (1995): A framework for image quality models. Journal of Imaging Science and Technology, 39 (4), 312–318.Google Scholar
  82. 82.
    Narita, N. (1994): Consideration of subjective evaluation method for quality of image coding, Electronics and Communications in Japan: Part 3, 77 (7) 84–97.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Konstantinos N. Plataniotis
    • 1
  • Anastasios N. Venetsanopoulos
    • 1
  1. 1.Department of Electrical & Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations